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Notes on Correlated Errors

This note describes how to prepare the ingredients needed to combine measurements in
a manner that treats correlated systematic uncertainties into account. The basic picture is
described in Sec. 1 and Sec. 3 provides further details on how this can be implemented.

1 Basic picture

As discussed in Ref. [1], the phrase “correlated systematics” is often taken to mean the situa-
tion where a nuisance parameter affects multiple measurements in a coherent way. Suppose,
for example, that the expectation values E[yi] of measured quantities yi with i = 1, . . . , L
are functions ϕi(µ,θ) of parameters of interest µ = (µ1, . . . , µM ) and nuisance parameters
θ = (θ1, . . . , θN ). Suppose further that the nuisance parameters are defined such that for
θ = 0 the yi are unbiased measurements of the nominal model ϕi(µ). Expanding ϕi to first
order in θ therefore gives

E[yi] = ϕi(µ,θ) ≈ ϕi(µ) +
N∑

j=1

Rijθj , (1)

where the factors Rij = ∂ϕi/∂θj |θ=0 determine how much θj biases the measurement yi.

Suppose that the Rij are known, either from symmetry (e.g., a particular θj could be
known to contribute equally to all of the yi) or they are determined using a Monte Carlo
simulation. As before suppose one has a set of independent Gaussian-distributed control mea-
surements uj used to constrain the nuisance parameters, with mean values θj and standard
deviations σuj

. One can define the total bias of measurement yi as

bi =
N∑

j=1

Rijθj . (2)

and an estimator for bi is

b̂i =
N∑

j=1

Rijuj . (3)

These estimators of the biases are correlated. As the control measurements are assumed
independent, and therefore cov[uk, ul] = V [uk]δkl, the covariance of the bias estimators is

Uij = cov[b̂i, b̂j ] =
N∑

k=1

RikRjkV [uk] . (4)

It is in the sense described here that the proposed model is capable of treating correlated
systematic uncertainties. That is, although the control measurements ui are independent
they result in a nondiagonal covariance for the estimated biases of the measurements.
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The overall scale of the Rij for a given j can be absorbed into the definition of θj , and
the corresponding uncertainty is thus reflected in the standard deviation σuj

of its estimate.
Ratios of the Rij , e.g., Rij/Rkj , reflect the relative influence of θj on yi and yk. If these ratios
are uncertain and thus should not be treated as fixed constants, one can introduce further
nuisance parameters, which are constrained with yet more control measurements. To the
extent that the assumed variances of these control measurements are themselves uncertain
one could treat them as adjustable parameters with gamma-distributed estimates, just as for
other nuisance parameters in the model.

If one is given the L × L covariance matrix U it is possible provided certain conditions
are satisfied to find the N variances V [ui] and thus construct the model entirely in terms of
the independent measurements ui. For example, suppose

y1 ∼ Gauss (µ+ θ1 + θ3, σy1) , (5)

y2 ∼ Gauss (µ+ θ2 + θ3, σy2) . (6)

In this case matrix R is

R =

(
1 0 1

0 1 1

)
(7)

The covariance matrix U of the bias estimates are

U11 = V [b̂1] = V [u1] + V [u3] , (8)

U22 = V [b̂2] = V [u2] + V [u3] , (9)

U12 = U21 = cov[b̂1, b̂2] = cov[u1 + u3, u2 + u3] = V [u3] . (10)

These equations can be solved for

V [u1] = U11 − U12 , (11)

V [u2] = U22 − U12 , (12)

V [u3] = U12 . (13)

That is, given a systematic covariance matrix U and the information on what nuisance pa-
rameters are common to what measurements, it can be possible to solve for the variances
V [uj ] of an independent set of control measurements uj .

From Eqs. (11)-(13) one can see that the covariance matrix that emerges from this model
has certain properties that go beyond its minimal requirement of being positive semi-definite.
Since all of the variances V [ui] must be non-negative, one must have U11 ≥ U12 and also
U22 ≥ U12. If the elements of U are assigned using Eqs. (8)-(10), then these inequalities are
satisfied by construction.

Suppose, on the other hand, one were to start by writing down the the matrix U as
Uij = δijσ

2
i + (1 − δij)ρσiσj , and then choose “by hand” values for ρ, σ1 and σ2. If, for

example, ρ = 1 and σ1 6= σ2, then Eqs. (11) and (12) say that one of V [u1] or V [u2] will be
assigned a negative value. So that covariance matrix U could not have come from the model
described above.
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2 Special cases

In this section several specific cases are investigated, including that of a fully correlated
uncertainty in Sec. 2.1 and two-point systematics in Sec. 2.2.

2.1 Fully correlated uncertainty

An interesting special case is that of L independent Gaussian measurements y = (y1, . . . , yL)
with expectation values

E[yi] = µ+ θ , i = 1, . . . , L , (14)

where µ is the parameter of interest and the single bias parameter θ is common to all of the
measurements. In the notation of Sec. 1 this corresponds to having ϕ(µ) = µ, i.e., the fit
function corresponds to estimating a common mean with Rij = 1 for all i = 1, . . . , L and for
j = 1 only, since there is only N = 1 nuisance parameter θ. We also have a single indendent
measurement u with mean θ and standard deviation σu.

If σu is known then the log-likelihood function is (cf. Eq. (53) of Ref. [1]),

lnL(µ, θ) = −1

2

L∑

i=1

(yi − µ− θ)2

σ2
yi

− 1

2

(u− θ)2

σ2
u

. (15)

Or if one treats the variance σ2
u as a free parameter with a gamma-distributed estimate v,

then the profile likelihood is found to be (see Ref. [1], Eq. (55)),

lnL′(µ, θ) = −1

2

L∑

i=1

(yi − µ− θ)2

σ2
yi

− 1

2

(
1 +

1

2r2

)
ln

[
1 + 2r2

(u− θ)2

v

]
. (16)

Here r is the relative “error-on-the-error” parameter defined by Eq. (9) of Ref. [1]. In the
limit r → 0, Eq. (16) reduces to Eq. (15) with the replacement v → σu2.

Assuming for the moment that an appropriate value of r has been chosen for the error-on-
the-error parameter, we can determine the estimators for µ and θ by setting the corresponding
derivatives of lnL′

∂ lnL′

∂µ
=

N∑

i=1

yi − µ− θ

σ2
yi

, (17)

∂ lnL′

∂θ
=

N∑

i=1

yi − µ− θ

σ2
yi

+
(1 + 2r2)(u− θ)

σ2
u + 2r2(u− θ)2

, (18)

to zero. Solving for µ and θ gives the estimators

µ̂ =

∑N
i=1 yi/σ

2
yi∑N

i=1 1/σ
2
yi

− u (19)

θ̂ = u , (20)
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where for the actual measurement one would take u = 0. The standard deviation of θ̂ is σu
and for that of µ̂ one finds

σµ̂ =

[
1

∑N
i=1 1/σ

2
yi

+ σ2
u

]1/2
. (21)

Superficially this appears to say that the standard deviation σµ̂ is independent of r. But
of course we don’t know the exact value of σ2

u. And although v is initially regarded as the
estimate of σ2

u, the maximum-likelihood estimator for σ2
u found from the full likelihood is

σ̂2
u =

v

1 + 2r2
. (22)

so that the estimate of the standard deviation of µ̂ is

σ̂µ̂ =

[
1

∑N
i=1 1/σ

2
yi

+
v

1 + 2r2

]1/2
. (23)

Thus we find that µ̂ and its true standard deviation are independent of r, but that the
maximum likelihood estimate of σµ̂ decreases for increasing r.

2.2 Possible Ansatz for two-point systematics

Another interesting example is where one has L measurements yi, i = 1, . . . , L of a parameter
µ, whose expectation values are modeled as

E[yi] = µ+ Ciθ0 + Siθi . (24)

That is, there is one parameter, θ0, that is a common contribution to the bias of all of the
measurements, scaled in general by a known constant Ci. Each measurement then contains a
separate bias contribution through the parameter θi, scaled in general by a known constant
Si.

There are thus N = L+ 1 nuisance parameters (θ0, θ1, . . . , θL), and as before we suppose
that each is estimated by an independent Gaussian distributed value ui with standard devi-
ation σui

. The matrix Rij as defined through Eq. (1) (but with the index j starting at zero)
is therefore

Rij =

{
Ci i = 1, . . . , L, j = 0,

Siδij i = 1, . . . , L, j = 1, . . . , L.
(25)

The bias of the ith measusrement is therefore bi = Ciθ0 + Siθi, which can be estimated
using

b̂i = Ciu0 + Siui . (26)

The bias estimators have covariance

cov[b̂i, b̂j ] = CiCjσ
2
u0

+ SiSjδijσ
2
ui

. (27)

4



In this example we will suppose that the constants Ci and Si are known (often they would
be equal to unity), and the required ingredients are estimates of the N = L + 1 standard
deviations σu0

, . . . , σuL
and the corresponding error-on-error parameters ri.

Let us suppose that the nuisance parameters θ0, . . . , θL are introduced into the model
to account for a particular class of uncertainty. As an example, one could consider the
hadronization uncertainty involved in an estimate of the strong coupling constant αs from
distributions of event-shape variables (thrust, maximum jet mass, etc.). Suppose that the
only way to roughly estimate the size of the uncertainty is to use two different hadronization
models to correct for the effect (e.g., Pythia and Herwig).

Let us suppose following Ref. [1] (cf. Eqs. (12)-(14)), that the best estimate for the
result is taken using the average of the two correction procedures and that the difference
between the two provides information on the corresponding uncertainty. More precisely, the
standard deviation of the bias estimate is taken as the difference divided by

√
2. Using this

procedure (or whatever alternative is deemed appropriate) we will suppose that the analyst
can assign meaningful values to the standard deviations of the bias estimates σb̂i for all of
the measurements, i.e., i = 1, . . . , L.

3 What is needed in practice

What one needs in practice is a general procedure for constructing the likelihood function
for parameters of interest µ and some set of nuisance parameters. Suppose one is given the
probability (density) P (y|µ), e.g., a multivariate Gaussian with a given covariance matrix,
which encodes the statistical errors in the primary measurements y = (y1, . . . , yL). Let us
suppose further that the L measurements are also characterized by an L × L systematic
covariance matrix T , interpreted as relating to potential additive biases in the yi. We will
suppose that this matrix can be written as the sum of two terms, T = U + W , where the
part U can be related to control measurements of nuisance parameters and W is whatever is
left over. For example, the expectation value of yi may be modeled as

E[yi] = µ+ βi + ηi , (28)

where µ is the parameter of interest and βi and ηi are two different contributions to the bias.
The term βi can be explicitly related to uncertainties connected to control measurements,
i.e., we take

βi =
N∑

j=1

Rijθj , (29)

where as in Sec. 1 the Rij are known factors. Similar to above we can estimate βi with

β̂i =
N∑

j=1

Rijuj , (30)

where uj ∼ Gauss(θj , σuj
) are independent control measurements with variances V [uj ] = σ2

uj
.

Because there can be θj that contribute to the same yi, the estimators β̂i are correlated with
covariance matrix
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Uij = cov[β̂i, β̂j ] =
N∑

k=1

RikRjkV [uk] . (31)

In general it may be that the information about the origin of some of the systematic
uncertainties is incomplete, i.e., the remaining parts of the bias η = (η1, . . . , ηN ) are not
constrained by given control measurements. Rather, the only available information about
the ηi comes from the total systematic covariance matrix

T = U +W . (32)

Here U is given by Eq. (31) and the remaining partW = T−U is defined to be whatever is left
over. If W is not a positive-definite matrix, then the information supplied is not consistent.
One then needs to go back and ensure that one begins with a consistent set of inputs.

We suppose that there are control measurements z = (z1, . . . , zN ) Gaussian distributed
about η with covariance matrix W . As with the uj , in the real experiment the zi would be
taken as zero (or in general their best estimates). The likelihood function can be written as

L(µ,θ,η) = P (y|µ,θ,η)

×
N∏

j=1

1√
2πσuj

e
−(uj−θj)

2/2σ2
uj

× 1

(2π)N/2|W |1/2 exp
[
−1

2
(z− η)TW−1(z− η)

]
. (33)

This likelihood function can be generalized to include “errors-on-errors” according to the
procedure of Ref. [1] by treating the σuj

as nuisance parameters. But it is not possible to
do this for the portion of the systematic uncertainty attributed to W = T − U , since its
origin has not been documented, i.e., it is not connected with well-defined control measure-
ments. Nevertheless the procedure above allows one to treat the errors on at least some of
the systematic errors. One cannot possibly treat errors on the errors unless one has some
information on their origin and therefore the procedure described above may be as good as
can be achieved in practice.
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