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Outline 
Day 1:  Introduction and basic formalism 

 Probability, statistical tests, parameter estimation. 

Day 2:  Discovery 
 Quantifying discovery significance and sensitivity 
 Systematic uncertainties (nuisance parameters) 

Day 3:  Exclusion limits 
 Frequentist and Bayesian intervals/limits 
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 Outline for Day 2 
Large-sample statistical formulae for a search at the LHC 

 Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, 
  EPJC 71 (2011) 1-19 
 Significance test using profile likelihood ratio 
 Systematics included via nuisance parameters 
 Distributions in large sample limit, no MC used. 

Progress on related issues (some updates from PHYSTAT2011): 
 The “look elsewhere effect” 
 The “CLs” problem 
 Combining measurements 
 Improving treatment of systematics 
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A simple example 
For each event we measure two variables, x = (x1, x2). 

Suppose that for background events (hypothesis H0),  

and for a certain signal model (hypothesis H1) they follow 

where x1, x2  ≥ 0 and C is a normalization constant. 
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Likelihood ratio as test statistic 
In a real-world problem we usually wouldn’t have the pdfs  
f(x|H0) and f(x|H1), so we wouldn’t be able to evaluate the 
likelihood ratio  

for a given observed x, hence 
 the need for multivariate  
methods to approximate this  
with some other function. 

But in this example we can  
find contours of constant  
likelihood ratio such as: 
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Event selection using the LR 
Using Monte Carlo, we can find the distribution of the likelihood 
ratio or equivalently of 

signal (H1) 

background 
 (H0) 

From the Neyman-Pearson lemma 
we know that by cutting on this 
variable we would select a signal 
sample with the highest signal 
efficiency (test power) for a given 
background efficiency. 
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Search for the signal process 
But what if the signal process is not known to exist and we want 
to search for it.   The relevant hypotheses are therefore 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0 with Z > 5 constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 
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Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 
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Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 

Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 

Suppose in real experiment 
Q is observed here. 
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Systematic uncertainties 
Up to now we assumed all parameters were known exactly. 

 In practice they have some (systematic) uncertainty. 

Suppose e.g. uncertainty in expected number of background events 
b is characterized by a (Bayesian) pdf π(b). 

Maybe take a Gaussian, i.e., 

where b0 is the nominal (measured) value and σb is the estimated 
uncertainty. 

 In fact for many systematics a Gaussian pdf is hard to  
 defend – more on this later. 
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Distribution of Q with systematics 
To get the desired p-values we need the pdf f (Q), but 
this depends on b, which we don’t know exactly.   

But we can obtain the Bayesian model average: 

With Monte Carlo, sample b from π(b), then use this to generate  
Q from f (Q|b), i.e., a new value of b is used to generate the data 
for every simulation of the experiment. 

This broadens the distributions of Q and thus increases the  
p-value (decreases significance Z) for a given Qobs. 
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Distribution of Q with systematics (2) 
For s = 20, b0 = 100, σb = 10 this gives 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 
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Using the likelihood ratio L(s)/L(s) ˆ 

Instead of the likelihood ratio Ls+b/Lb, suppose we use as a test 
statistic  

Intuitively this is a measure of the level of agreement between  
the data and the hypothesized value of s. 

 low λ:  poor agreement 
 high λ : better agreement 
 0 ≤ λ ≤ 1 

maximizes L(s) 
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L(s)/L(s) for counting experiment ˆ 
Consider an experiment where we only count n events with 
n ~ Poisson(s + b).  Then                 . 

To establish discovery of signal we test the hypothesis s = 0 using 

whereas previously we had used 

which is monotonic in n and thus equivalent to using  n as 
the test statistic. 
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L(s)/L(s) for counting experiment (2) ˆ 
But if we only consider the possibility of signal being present 
when n > b, then in this range λ(0) is also monotonic in n, 
so both likelihood ratios lead to the same test. 

b 
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L(s)/L(s) for general experiment ˆ 
If we do not simply count events but also measure for each some  
set of numbers, then the two likelihood ratios do not necessarily  
give equivalent tests, but in practice will be very close. 

λ(s) has the important advantage that for a sufficiently large event 
sample, its distribution approaches a well defined form (Wilks’ 
Theorem). 

 In practice the approach to the asymptotic form is rapid and  
 one obtains a good approximation even for relatively small  
 data samples (but need to check with MC). 

This remains true even when we have adjustable nuisance  
parameters in the problem, i.e., parameters that are needed for 
a correct description of the data but are otherwise not of 
interest (key to dealing with systematic uncertainties). 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 

Assume the ni are Poisson distributed with expectation values 
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signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 

Assume the mi are Poisson distributed with expectation values 
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nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 
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maximizes L for 
Specified µ	


maximize L	


The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ ′),  
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Test statistic for upper limits 

For purposes of setting an upper limit on µ use 
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Note for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 

where 
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Alternative test statistic for upper limits 
Assume physical signal model has µ > 0, therefore if estimator 
for µ comes out negative, the closest physical model has µ = 0. 

Therefore could also measure level of discrepancy between data  
and hypothesized µ with 
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Performance not identical to but very close to qµ (of previous slide). 
qµ  is simpler in important ways:  asymptotic distribution is  
independent of nuisance parameters. 
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Wald approximation for profile likelihood ratio 
To find p-values, we need: 

For median significance under alternative, need: 
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Use approximation due to Wald (1943) 

sample size 
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Noncentral chi-square for -2lnλ(µ) 
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If we can neglect the O(1/√N) term, -2lnλ(µ) follows a 
 noncentral chi-square distribution for one degree of freedom 
with noncentrality parameter 

As a special case, if µ′ = µ then Λ = 0 and -2lnλ(µ) follows 
a chi-square distribution for one degree of freedom (Wilks). 
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The Asimov data set 
To estimate median value of -2lnλ(µ), consider special data set 
where all statistical fluctuations suppressed and ni, mi are replaced 
by their expectation values (the “Asimov” data set): 
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Asimov value of 
-2lnλ(µ) gives non- 
centrality param. Λ,	

or equivalently, σ.	
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Relation between test statistics and 	
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Distribution of q0 

Assuming the Wald approximation, we can write down the full  
distribution of q0 as 
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The special case µ′ = 0 is a “half chi-square” distribution:  
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  
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The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 
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Relation between test statistics and       	
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Assuming the Wald approximation for – 2lnλ(µ), qµ and qµ  
both have monotonic relation with µ.  

~ 

And therefore quantiles 
of qµ, qµ can be obtained 
directly from those  
οf µ (which is Gaussian). ˆ 

̃ 

~ 
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Distribution of qµ	


Similar results for qµ	
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Distribution of qµ	
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Similar results for qµ	
̃ 

̃ 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	

level (q0 = 25) already for 
b ~ 20. 
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Monte Carlo test of asymptotic formulae 	
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For very low b, asymptotic 
formula underestimates Z0. 

Then slight overshoot before 
rapidly converging to MC 
value. 

Significance from asymptotic formula, here Z0 = √q0 = 4,  
compared to MC (true) value. 
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Monte Carlo test of asymptotic formulae 	
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Asymptotic  f (q0|1)  good already for fairly small samples. 

Median[q0|1] from Asimov data set; good agreement with MC. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 
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Monte Carlo test of asymptotic formulae 	
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Same message for test based on qµ. 

qµ and qµ give similar tests to  
the extent that asymptotic 
formulae are valid. 

~ 

~ 
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Discovery significance for n ~ Poisson(s + b) 

Consider again the case  where we observe n events , 
model as following Poisson distribution with mean s + b 
(assume b is known). 

1)   For an observed n, what is the significance Z0 with which 
     we would reject the s = 0 hypothesis? 

2)   What is the expected (or more precisely, median ) Z0 if  
     the true value of the signal rate is s? 
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Gaussian approximation for Poisson significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for Poisson significance 

Likelihood function for parameter s is 

or equivalently the log-likelihood is 

Find the maximum by setting  

gives the estimator for s:  
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Approximate Poisson significance (continued) 
The likelihood ratio statistic for testing s = 0 is 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z0|s+b], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(µ s+b),  median significance, 
assuming µ = 1, of the hypothesis µ = 0 

“Exact” values from MC, 
jumps due to discrete data. 

Asimov √q0,A good approx. 
for broad range of s, b. 

s/√b only good for s « b. 

CCGV, arXiv:1007.1727 



46 

Example 2:  Shape analysis	
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Look for a Gaussian bump sitting on top of: 
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Monte Carlo test of asymptotic formulae 	
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Distributions of qµ here for µ that gave pµ = 0.05. 



48 

Using f(qµ|0) to get error bands	
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We are not only interested in the median [qµ|0]; we want to know 
how much statistical variation to expect from a real data set. 

But we have full f(qµ|0); we can get any desired quantiles. 
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Distribution of upper limit on µ	
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±1σ (green) and ±2σ (yellow) bands from MC; 

Vertical lines from asymptotic formulae 
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Limit on µ versus peak position (mass)	
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±1σ (green) and ±2σ (yellow) bands from asymptotic formulae; 

Points are from a single arbitrary data set. 
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Using likelihood ratio Ls+b/Lb	
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Many searches at the Tevatron have used the statistic 

likelihood of µ = 1 model (s+b) 

likelihood of µ = 0 model (bkg only) 

This can be written 
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Wald approximation for Ls+b/Lb	
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Assuming the Wald approximation, q can be written as 

i.e. q is Gaussian distributed with  mean and variance of 

To get σ2 use 2nd derivatives of lnL with Asimov data set. 
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Example with Ls+b/Lb	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
b = 20, s = 10, τ = 1. 

So even for smallish data  
sample, Wald approximation 
can be useful; no MC needed. 
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The Look-Elsewhere Effect 
Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→ EPJC) 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.	


The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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p-value for fixed mass 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0. 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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p-value for floating mass 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Distributions of tfix, tfloat 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 
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Trials factor 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show that the “trials factor” can be  
approximated by 

where ‹N› = average number of “upcrossings” of -2lnL in fit range  
and 

is the significance for the fixed mass case. 

So we can either carry out the full floating-mass analysis (e.g. use  
MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Upcrossings of -2lnL 
The Gross-Vitells formula for the trials factor requires the 
mean number “upcrossings” of -2ln L in the fit range based 
on fixed threshold. 

estimate with MC 
at low reference 
level 

Eilam Gross and Ofer Vitells, arXiv:1005.1891 (→EPJC) 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Eilam Gross and Ofer Vitells, PHYSTAT2011 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 
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Summary on Look-Elsewhere Effect 
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Extra Slides 
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RooStats 
G. Schott 
PHYSTAT2011 
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RooFit Workspaces 

Able to construct full likelihood for combination of channels 
(or experiments). 
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G. Schott 
PHYSTAT2011 
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Combined ATLAS/CMS Higgs search 
K. Cranmer 
PHYSTAT2011 

Given p-values p1,..., pN of H, what is combined p? 

Better, given the results of N (usually independent) experiments,  
what inferences can one draw from their combination? 

Full combination is difficult but worth the effort for e.g. Higgs search. 


