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Outline 
Day 1:  Introduction and basic formalism 

 Probability, statistical tests, parameter estimation. 

Day 2:  Discovery 
 Quantifying discovery significance and sensitivity 
 Systematic uncertainties (nuisance parameters) 

Day 3:  Exclusion limits 
 Frequentist and Bayesian intervals/limits 
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Interval estimation — introduction 

Often use +/- the estimated standard deviation of the estimator. 
In some cases, however, this is not adequate: 

 estimate near a physical boundary,  
 e.g., an observed event rate consistent with zero. 

In addition to a ‘point estimate’ of a parameter we should report  
an interval reflecting its statistical uncertainty.   

Desirable properties of such an interval may include: 
 communicate objectively the result of the experiment; 
 have a given probability of containing the true parameter; 
 provide information needed to draw conclusions about 
 the parameter possibly incorporating stated prior beliefs. 

We will look briefly at Frequentist and Bayesian intervals. 
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Frequentist confidence intervals 
Consider an estimator for a parameter θ and an estimate 

We also need for all possible θ its sampling distribution 

Specify upper and lower tail probabilities, e.g., α = 0.05, β = 0.05, 
then find functions uα(θ) and vβ(θ) such that: 
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Confidence interval from the confidence belt 

Find points where observed  
estimate intersects the  
confidence belt.   

The region between uα(θ) and vβ(θ) is called the confidence belt. 

This gives the confidence interval [a, b] 

Confidence level = 1 - α - β = probability for the interval to 
cover true value of the parameter (holds for any possible true θ). 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ γ  
 for a prespecified γ, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size γ  (confidence level is 1 - γ ). 

The interval will cover the true value of θ with probability ≥ 1 - γ. 

Equivalent to confidence belt construction; confidence belt is  
acceptance region of a test. 
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Relation between confidence interval and p-value 

Equivalently we can consider a significance test for each 
hypothesized value of θ, resulting in a p-value, pθ..   

 If pθ < γ, then we reject θ.  

The confidence interval at CL = 1 – γ consists of those values of  
θ  that are not rejected. 

E.g. an upper limit on θ is the greatest value for which pθ ≥ γ.  

 In practice find by setting pθ = γ and solve for θ. 

G. Cowan  
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Confidence intervals in practice 
The recipe to find the interval [a, b] boils down to solving 

→ a is hypothetical value of θ such that  

→ b is hypothetical value of θ such that 
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Meaning of a confidence interval 
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Setting limits on Poisson parameter 
Consider again the case of finding n = ns + nb events where 

nb events from known processes (background) 
ns events from a new process (signal) 

are Poisson r.v.s with means s, b, and thus n = ns + nb 
is also Poisson with mean = s + b.  Assume b is known. 

Suppose we are searching for evidence of the signal process, 
but the number of events found is roughly equal to the 
expected number of background events, e.g., b = 4.6 and we  
observe nobs = 5 events. 

→  set upper limit on the parameter s. 

The evidence for the presence of signal events is not 
statistically significant, 
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Upper limit for Poisson parameter 
Find the hypothetical value of s such that there is a given small 
probability, say, γ = 0.05, to find as few events as we did or less: 

Solve numerically for s = sup, this gives an upper limit on s at a 
confidence level of 1-γ. 

Example:  suppose b = 0 and we find nobs = 0.  For 1-γ = 0.95, 

→ 
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Calculating Poisson parameter limits 
To solve for slo, sup, can exploit relation to χ2 distribution: 

Quantile of χ2 distribution 

For low fluctuation of n this  
can give negative result for sup;  
i.e. confidence interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when limit of parameter is close to a  
physical boundary.  
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 



G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 3 16 

Bayesian prior for Poisson parameter 
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve numerically to find limit sup. 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as classical case (‘coincidence’).  

Otherwise Bayesian limit is 
everywhere greater than 
classical (‘conservative’). 

Never goes negative. 

Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In a Subjective Bayesian analysis, using  objective priors can be an  
important part of the sensitivity analysis. 
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Priors from formal rules (cont.)  
In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  For a review see: 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002,  
arxiv:1002.1111 (Feb 2010) 
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Jeffreys’ prior 
According to Jeffreys’ rule, take prior according to 

where 

is the Fisher information matrix. 

One can show that this leads to inference that is invariant under 
a transformation of parameters. 

For a Gaussian mean, the Jeffreys’ prior is constant; for a Poisson  
mean µ it is proportional to 1/√µ.  
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Jeffreys’ prior for Poisson mean 

Suppose n ~ Poisson(µ).  To find the Jeffreys’ prior for µ, 

So e.g. for µ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s. 
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Bayesian limits with uncertainty on b 
Uncertainty on b goes into the prior, e.g., 

Put this into Bayes’ theorem, 

Marginalize over b, then use p(s|n) to find intervals for s 
with any desired probability content. 

Framework for treatment of nuisance parameters well defined; 
choice of prior can still be problematic, but often less so than 
finding a “non-informative” prior for a parameter of interest. 
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Comment on priors 
Suppose we measure n ~ Poisson(s+b), goal is to make inference 
about s. 

Suppose b is not known exactly but we have an estimate b 
with uncertainty σb. 

For Bayesian analysis, first reflex may be to write down a  
Gaussian prior for b, 

But a Gaussian could be problematic because e.g. 
 b ≥ 0, so need to truncate and renormalize; 
 tails fall off very quickly, may not reflect true uncertainty. 

ˆ 
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Gamma prior for b 
What is in fact our prior information about b?  It may be that  
we estimated b using a separate measurement (e.g., background  
control sample) with 

        m ~ Poisson(τb)              (τ = scale factor, here assume known) 

Having made the control measurement we can use Bayes’ theorem 
to get the probability for b given m, 

If we take the “original” prior π0(b) to be to be constant for b ≥ 0, 
then the posterior π(b|m), which becomes the subsequent prior  
when we measure n and infer s, is a Gamma distribution with: 

 mean =  (m + 1) /τ	


 standard dev. = √(m + 1) /τ 
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Gamma distribution 
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Frequentist approach to same problem 

In the frequentist approach we would regard both variables 

 n ~ Poisson(s+b) 
 m ~ Poisson(τb) 

as constituting the data, and thus the full likelihood function is 

Use this to construct test of s with e.g. profile likelihood ratio 

Note here that the likelihood refers to both n and m, whereas 
the likelihood used in the Bayesian calculation only modeled n. 
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Choice of test for limits 
Often we want to ask what values of µ can be excluded on  
the grounds that the implied rate is too high relative to what is 
observed in the data. 

To do this take the alternative to correspond to lower values of µ. 

The critical region to test µ thus contains low values of the data. 

 → One-sided (e.g., upper) limit. 

In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold (e.g., likelihood ratio wrt two-sided alternative). 

The critical region can contain both high and low data values.   

 → Two-sided or unified (Feldman-Cousins) intervals. 



I.e. for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  We use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure. 



G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 3 34 

The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ = 1 (s+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     
f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(one minus the p-value of the b-only hypothesis, i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (q|b)     f (q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Likelihood ratio limits (Feldman-Cousins) 
Define likelihood ratio for hypothesized parameter value s: 

Here       is the ML estimator, note  

       Critical region defined by low values of likelihood ratio. 

Resulting intervals can be one- or two-sided (depending on n). 

       (Re)discovered for HEP by Feldman and Cousins,  
       Phys. Rev. D 57 (1998) 3873. 

      See also Cowan, Cranmer, Gross & Vitells, arXiv:1007.1727 
      for details on including systematic errors and on asymptotic 
      sampling distribution of likelihood ratio statistic.  
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Profile likelihood ratio for unified interval 
We can also use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters). 
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Distribution of tµ	



Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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Power Constrained Limits (PCL) 
CLs has been criticized because the coverage probability of the 
upper limit is greater than the nominal CL = 1 - α by an amount  
that is not readily apparent (but can be computed). 

Therefore we have proposed an alternative method for protecting 
against exclusion with little/no sensitivity, by regarding a value of 
µ to be excluded if: 

Here the measure of sensitivity is the power of the test of µ 
with respect to the alternative µ = 0: 
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Constructing PCL 
First compute the distribution under assumption of the  
background-only (µ = 0) hypothesis of the “usual” upper limit µup  
with no power constraint. 

The power of a test of µ with respect to µ = 0 is the fraction of 
times that µ is excluded (µup < µ): 

Find the smallest value of µ (µmin), such that the power is at 
least equal to the threshold Mmin. 

The Power-Constrained Limit is: 
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PCL for upper limit with Gaussian measurement  

Suppose    ~ Gauss(µ, σ), goal is to set upper limit on µ. 

Define critical region for test of µ as 

This gives (unconstrained) upper limit: 

µ̂

inverse of standard Gaussian 
cumulative distribution 
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Power M0(µ) for Gaussian measurement  
The power of the test of µ with respect to the alternative µ′  = 0 is: 

standard Gaussian 
cumulative distribution 
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Spurious exclusion when µ fluctuates down 
Requiring the power be at least Mmin 

implies that the smallest µ to which one is sensitive is 

If one were to use the unconstrained limit, values of µ at or  
below µmin would be excluded if 

 ̂

That is, one excludes µ < µmin when the unconstrained limit  
fluctuates too far downward. 
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Choice of minimum power 
Choice of Mmin is convention.  Formally it should be large relative 
to α (5%).   Earlier we have proposed 

because in Gaussian example this means that one applies the 
power constraint if the observed limit fluctuates down by one  
standard deviation. 

In fact the distribution of µup is often roughly Gaussian, so we 
call this a “1σ” (downward) fluctuation and use Mmin = 0.16  
regardless of the exact distribution of µup.  

For the Gaussian example, this gives µmin = 0.64σ, i.e., the lowest  
limit is similar to the intrinsic resolution of the measurement (σ). 
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Upper limits for Gaussian problem 
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Coverage probability for Gaussian problem 
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PCL in practice 

PCL with Mmin = 0.16 

Here power below 
threshold; do not  
exclude. 

median limit 
(unconstrained) 

+/- 1σ band 
of limit dist. 
assuming µ = 0. 

observed limit 

Important to report both the constrained and unconstrained limits. 



G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 3 50 

Some reasons to consider increasing Mmin 
Mmin is supposed to be “substantially” greater than α (5%). 

So Mmin = 16% is fine for 1 – α = 95%, but if we ever want  
1 – α = 90%,  then16% is not “large” compared to 10%;  
µmin = 0.28σ starts to look small relative to the intrinsic resolution  
of the measurement.  Not an issue if we stick to 95% CL. 

PCL with Mmin = 16%  is often substantially lower than CLs. 
This is because of the conservatism of CLs (see coverage). 

But goal is not to get a lower limit per se, rather  

●  to use a test with higher power in those regions where one 
    feels there is enough sensitivity to justify exclusion and  

● to allow for easy communication of coverage (95% for 
    µ ≥ µmin; 100% otherwise). 
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Aggressive conservatism 
It could be that owing to practical constraints, certain systematic 
uncertainties are over-estimated in an analysis; this could 
be justified by wanting to be conservative. 

The consequence of this will be that the +/-1 sigma bands of 
the unconstrained limit are broader than they otherwise would be. 

If the unconstrained limit fluctuates low, it could be that the 
PCL limit, constrained at the -1sigma band, is lower than it 
would be had the systematics been estimated correctly. 

  conservative = aggressive 

If the power constraint Mmin is at 50%, then by inflating the  
systematics the median of the unconstrained limit is expected to  
move less, and in any case upwards, i.e., it will lead to a less 
strong limit (as one would expect from “conservatism”). 
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A few further considerations  
Obtaining PCL requires the distribution of unconstrained limits, 
from which one finds the Mmin (16%, 50%) percentile. 

In some analyses this can entail calculational issues that 
are expected to be less problematic for Mmin = 50% than for 16%. 

Analysts produce anyway the median limit, even in absence of 
the error bands, so with Mmin = 50%  the burden on the analyst is  
reduced somewhat (but one would still want the error bands). 

We therefore recently proposed moving Mmin to 50%. 
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PCL with Mmin = 0.16, 0.50 (and other limits) 

With Mmin = 50%, power constraint is applied half the time.   

This is somewhat contrary to the original spirit of preventing a 
 “lucky” fluctuation from leading to a limit that is small compared  
to the intrinsic resolution of the measurement. 

But PCL still lower than CLs most of the time (e.g., x > -0.4).  
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Treatment of nuisance parameters 
In most problems, the data distribution is not uniquely specified 
by µ but contains nuisance parameters θ. 

This makes it more difficult to construct an (unconstrained) 
interval with correct coverage probability for all values of θ, 
so sometimes approximate methods used (“profile construction”). 

More importantly for PCL, the power M0(µ) can depend on θ. 
So which value of θ to use to define the power? 

Since the power represents the probability to reject µ if the 
true value is µ = 0, to find the distribution of µup we take the  
values of θ that best agree with the data for µ = 0: 

May seem counterintuitive, since the measure of sensitivity 
now depends on the data.  We are simply using the data to choose 
the most appropriate value of θ where we quote the power. 
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Summary and conclusions 
Exclusion limits effectively tell one what parameter values are 
(in)compatible with the data. 

 Frequentist:  exclude range where p-value of param < 5%. 
 Bayesian:  low prob. to find parameter in excluded region.  

In both cases one must choose the grounds on which the parameter 
is excluded (estimator too high, low?  low likelihood ratio?) .  

With a “usual” upper limit, a large downward fluctuation 
can lead to exclusion of parameter values to which one has 
little or no sensitivity (will happen 5% of the time). 

 “Solutions”:  CLs, PCL, F-C 

All of the solutions have well-defined properties, to which 
there may be some subjective assignment of importance. 
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Extra slides 



G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 3 Lecture 12  page 57 

Coverage probability of intervals 
Because of discreteness of Poisson data, probability for interval 
to include true value in general > confidence level (‘over-coverage’) 
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Intervals from the likelihood function  
In the large sample limit it can be shown for ML estimators: 

defines a hyper-ellipsoidal confidence region, 

If  then 

(n-dimensional Gaussian, covariance V) 
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Approximate confidence regions from L(θ )  
So the recipe to find the confidence region with CL = 1-γ  is: 

For finite samples, these are approximate confidence regions. 

Coverage probability not guaranteed to be equal to 1-γ ; 

no simple theorem to say by how far off it will be (use MC). 

Remember here the interval is random, not the parameter. 
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Example of interval from ln L(θ )  
For n=1 parameter, CL = 0.683, Qγ = 1. 
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than naive 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Negatively Biased Relevant Subsets 
Consider again x ~ Gauss(µ, σ) and use this to find limit for µ. 

We can find the conditional probability for the limit to cover µ  
given x in some restricted range, e.g., x < c for some constant c. 

This conditional coverage probability may be greater or less than  
1 – α for different values of µ (the value of which is unkown). 

But suppose that the conditional coverage is less than 1 – α for  
all values of µ.  The region of x where this is true is a  
Negatively  Biased Relevant Subset. 

 Recent studies by Bob Cousins (CMS) and 
 Ofer Vitells (ATLAS) related to earlier publications, 
 especially, R. Buehler, Ann. Math. Sci., 30 (4) (1959) 845. 
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Betting Games 
So what’s wrong if the limit procedure has NBRS? 

Suppose you observe x, construct the confidence interval and assert  
that an interval thus constructed covers the true value of the  
parameter with probability 1 – α .   

This means you should be willing to accept a bet at odds α : 1 – α  
that the interval covers the true parameter value. 

Suppose your opponent accepts the bet if x is in the NBRS, and  
declines the bet otherwise.  On average, you lose, regardless of 
the true (and unknown) value of µ. 

With the “naive” unconstrained limit, if your opponent only accepts  
the bet when x < –1.64σ, (all values of µ excluded) you always lose! 

(Recall the unconstrained limit based on the likelihood ratio never  
excludes µ = 0, so if that value is true, you do not lose.) 
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NBRS for unconstrained upper limit 

Maximum wrt µ is less than 
1-α → Negatively biased 
relevant subsets. 

N.B. µ = 0 is never excluded 
for unconstrained limit based 
on likelihood-ratio test, so at 
that point coverage = 100%, 
hence no NBRS. 

For the unconstrained upper limit (i.e., CLs+b) the conditional 
probability for the limit to cover µ given x < c is: 

← 1 - α 
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(Adapted) NBRS for PCL 

Coverage goes to 100% for   
µ <µmin, therefore no NBRS.  

Note one does not have max 
conditional coverage ≥ 1-α 
for all µ > µmin (“adapted 
conditional coverage”).  But 
if one conditions on µ, no 
limit would satisfy this.  

For PCL, the conditional probability to cover  µ given x < c is: 

← 1 - α 
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Conditional coverage for CLs, F-C 


