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Exercise 1 Consider the following two pdfs for a continuous random variable x that corre-
spond to two types of events, signal (s) and background (b):

f(x|s) = 2(1− x) ,

f(x|b) = 4x3 ,

where 0 ≤ x ≤ 1. We want to select events of type s by requiring x < xcut for a specified
value of xcut. This can be viewed as a test of the hypothesis b, whereby an event is selected
if the b hypothesis is rejected. Suppose we want a test of size α = 10−4 (i.e., a background
efficiency of 10−4).

(a) Find xcut and indicate the critical region of the test. Find the power M with respect to
the hypothesis s (i.e., the signal efficiency) and evaluate numerically.

(b) Suppose the prior probabilities for events to be of types s and b are πs = 0.001 and
πb = 0.999, respectively. Find the purity of signal events in the selected sample, i.e., the
expected fraction of selected events that are of type s. Evaluate numerically.

(c) Suppose an event is observed with x = 0.1. Find the probability that the event is of type
b and evaluate numerically.

(d) Again for an event with x = 0.1, find the p-value for the hypothesis that the event is of
type b and evaluate numerically. Describe briefly how to interpret this number and why it is
not equal to the probability found in (c).

(e) Suppose in addition to x, for each event we measure a quantity y, and that the joint pdfs
for the s and b hypotheses are:

f(x, y|s) = 4(1− x)y ,

f(x, y|b) = 8x3(1− y) .

Write down a statistic t(x, y) for testing the hypothesis b which provides the highest power
with respect to s for a test of a given size. Justify your answer.

Exercise 2: The number of events observed in high-energy particle collisions having partic-
ular kinematic properties can be treated as a Poisson distributed variable. Suppose that for
a certain integrated luminosity (i.e. time of data taking at a given beam intensity), b = 3.9
events are expected from known processes and nobs = 16 are observed.

2(a) Compute the p-value for the hypothesis that no new signal process is contributing to
the number of events. To sum Poisson probabilities, you can use the relation

m∑

n=0

P (n; ν) = 1− Fχ2(2ν;ndof) , (1)

where P (n : ν) is the Poisson probability for n given a mean value ν, and Fχ2 is the cumulative
χ2 distribution for ndof = 2(m+1) degrees of freedom. This can be computed using the ROOT
routine TMath::Prob (which gives one minus Fχ2) or looked up in standard tables. If you
have difficulty getting a program to return Fχ2 , you can simply carry out the sum of Poisson
probabilities explicitly.

2(b) Find the corresponding equivalent Gaussian significance Z and evaluate numerically.


