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Outline

Quick overview of physics at the Large Hadron Collider (LHC)

New multivariate methods for event selection
Boosted Decision Trees
Support Vector Machines

Some thoughts on Bayesian methods
Statistical combination of search channels

Outlook for data analysis at the LHC
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Data analysis at the LHC

The LHC experiments are expensive
~ $10" (accelerator and experiments)

the competition 1s intense
(ATLAS vs. CMS) vs. Tevatron

and the stakes are high:

4 sigma effect

Y5 sigma effect

So there is a strong motivation to extract all possible information
from the data.
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The Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV
(— 10 TeV for 2009/10)

Detectors at 4 pp collision points:

ATLAS
CMS | general purpose

-

LHCb (b physics)
ALICE (heavy ion physics)
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The ATLAS detector

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

2100 physicists
37 countries
167 universities/labs

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

25 m diameter
46 m length

7000 tonnes
~10°® electronic channels
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The Standard Model of particle physics

Matter... + gauge bosons...

photon (y), W=, Z, gluon (g)
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+ relativity + quantum mechanics + symmetries... = Standard Model

25 free parameters (masses, coupling strengths,...).
Includes Higgs boson (not yet seen).

Almost certainly incomplete (e.g. no gravity).
Agrees with all experimental observations so far.

Many candidate extensions to SM (supersymmetry, extra dimensions,...)
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A simulated SUSY event in ATLAS

high p_jets

of hadrons

missing transverse energy
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Background events

ATLAS Atlantis Event: myFiles? 8.4.0 3026 798902

This event from Standard
Model ttbar production also
has high p_jets and muons,

and some missing transverse
energy.

— can easily mimic a SUSY event.
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[LHC data

At LHC, ~10° pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec
single event ~ 1 Mbyte

1 “year” = 10’ s, 10'° pp collisions / year
2 x 10” events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~10°
— 'needle in a haystack’

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).
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A simulated event
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Multivariate event selection

Suppose for each event we measure a set of numbers x=(x,,..., x )
X =Jetp.
X, = Missing energy

X, = particle 1.d. measure, ...

+ follows some n-dimensional joint probability density, which

depends on the type of event produced, 1.e., was it pp—tt, pp—gg,...

p(?C|H1) \ ‘\

A * as
A At g / E.g. hypotheses (class labels) H , H , ...

P LYY . .
JR 4 s Often simply “signal”, “background”
NS RPPaed
st ad w ‘*. st N .
';-f. . . We want to separate (classify) the

4 . event types in a way that exploits the

information carried in many variables.
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Finding an optimal decision boundary

Maybe select events with “cuts”:
x.<c

X <C,
J J

Goal of multivariate analysis 1s to do this in an “optimal” way.

Glen Cowan Statistical Methods for LHC Physics
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Test statistics

The decision boundary 1s a surface in the n-dimensional space of

input variables, e.g., y(3)=const

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 | I I
y cut

The decision boundary
accept H, ..iz reject H,

1s now effectively a single
1.5

cut on y(x), dividing A
1. ¢ |

X-space 1nto two
: . H |!
regions: . . f(y|H,) N /\ F(y|H )
, (accept H ) BET / A
R (reject H ) ) ~d \
0 2 5
y(x)
13
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given
significance level), choose the acceptance region for signal such that

where c 1s a constant that determines the signal efficiency.

Equivalently, the optimal discriminating function is given by the
likelihood ratio:

y (%)=
N.B. any monotonic function of this is just as good.

Statistical Methods for LHC Physics
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Neyman-Pearson doesn't always help

The problem 1s that we usually don't have explicit formulae for the pdfs
p(xls), p(xIb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate X~p(X¥s) —» X ..., x) / events of known type

generate X~p(Xb) — » X ..., X,

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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General considerations

In all multivariate analyses we must consider e.g.

Choice of variables to use

Functional form of decision boundary (type of classitier)
Computational issues

Trade-off between sensitivity and complexity

Trade-off between statistical and systematic uncertainty

Our choices can depend on goals of the analysis, e.g.,

Event selection for further study
Searches for new event types

Glen Cowan Statistical Methods for LHC Physics
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Decision boundary tlexibility

The decision boundary will be defined by some free parameters that

we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data

SO as to best separate between the event types for an unseen data sample.

overtraining ~ boundary too rigid good trade-off

Glen Cowan Statistical Methods for LHC Physics
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Some “standard” multivariate methods

Place cuts on individual variables
Simple, intuitive, in general not optimal

Linear discriminant (e.g. Fisher)
Simple, optimal if the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xls), p(xIb) then use y(X)=p(x|s)/p(x|b).
In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intuitive.

Glen Cowan Statistical Methods for LHC Physics
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Decision trees

In a decision tree repeated cuts are made on a single variable
until some stop criterion is reached.

The decision as to which variable is used 1s
based on best achieved improvement
in signal purity:

E W >0.2 GeV
signal = !

S
+ .
Zsignal W’ background W’ Ll

< 500 cm

P=

where w . 1s the weight of the ith event.

7/1 2/9

Iterate until stop criterion reached,

based e.g. on purity and minimum

number of events 1n a node. Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, — 1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7' consisting of N events with

X ... X~ event data vectors (each x multivariate)

Y- ¥, true class labels, +1 for signal, —1 for background

Wiy W event weights
1 N

Now define a rule to create from this an ensemble of training samples
T . TZ, .... , derive a classifier from each and average them.
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AdaBoost

A successtul boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

X ... X~ event data vectors

Yppeees Y, LIUE class labels (+1 or -1)

(1) (1)
e W N

with the weights equal and normalized such that Z wil): 1.
i=1

w event weights

Train the classifier f (x) (e.g. a decision tree) using the weights w'"

so as to minimize the classification error rate,

N
5122 WEI)I(yif1<xi)<O),
i=1

where I(X) =1 1f X is true and is zero otherwise.

Glen Cowan Statistical Methods for LHC Physics
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

Define the training sample for step k+1 from that of k by updating
the event weights according to

e_o‘kfk(xi)yi/z
Ek+1) _ ng)
Z, |
/ Pl ¥ Normalize so that
i =eventindex k= training sample index Z g

i

Iterate K times, final classifieris [ (x Z o, f.(x,T,)
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BDT example from MiniBooNE

~200 1nput variables for each event (v interaction producing e, L or T).

Each individual tree 1s relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

_l | 1 1 | | | 1 | | | | | | | 1 | | I |
1 1 e un-weighted misclassified event rate 3
0.8 1 a weighted nusclassified event rate. e :
. 1 x o_=p*In((l-ex_)er ). f=0.7
S 06 capintl, B SGEE. . Mo K GF @ ]
B ]
044
0.2 —:
0 _| | [ | | |
( 200 400 600 800 1000

Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE
example

Glen Cowan

Training MC Samples .VS. Testing MC Samples
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Boosted decision tree summary

Advantage of boosted decision tree 1s it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost,...)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classifier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick” one does not every have to write down
explicitly the feature space transformation.

Some references for kernel methods and SVMs:

The books mentioned in www. pp. r hul . ac. uk/ ~cowan/ mai nz_| ect ures. ht m

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research. m crosoft. conl ~cbur ges/ papers/ SVMrut ori al . pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.
The TMV A manual (!)

Glen Cowan Statistical Methods for LHC Physics
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[Linear SVMs

Consider a training data set consisting of
X ... X~ event data vectors

s ¥, true class labels (+1 or —1)

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “bias”). We have

x;w+b=+1 for all y = +1

x;w+b<—1 forall y =-1

or equivalently

yi(xi'w'l'b)—lZO for all i margin
Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes defined by y(x) =x-w + b =+1
and y(x) = —1 1s called the margin, which 1s:

. 2
margin=—-—
lwl

If the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this is equivalent to defining
the scale of w). These points are called support vectors.

Glen Cowan Statistical Methods for LHC Physics
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Linear SVM classifier

We can define the classifier using

y(x)=x-w+b

which is >0 for points on one side of the hyperplane and <0 on the other.

The best classifier should have a large margin, so to maximize

. 2
margin=—-—-
lwl

we can minimize ||w||> subject to the constraints

y.(x - w+b)—1>0 foralli

Glen Cowan Statistical Methods for LHC Physics
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

1 N
L:5”w”2_z O(i(yi(xi'w+b)_1)
i=1

\

We need to minimize L with respect to w and b and maximize

positive Lagrange multipliers o,

with respect to o..

There is an o for every training point. Those that lie on the margin

(the support vectors) have o> 0, all others have & = 0. The solution

can be written
. (sum only contains
W= Z X,y X,; su
l. pport vectors)
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Dual formulation

The classifier output 1s thus

y(x)=xw+b=) o y.x -x+b

It can be shown that one finds the same solution a by minimizing
the dual Lagrangian

1
LD:Z O‘i_EZ X, XY,y X; X,
i i,

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.

Glen Cowan Statistical Methods for LHC Physics
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables ﬁi:

y,(x, w+b)+&—1=0with& >0 forall i

Thus the training point x_ 1s allowed to
be up to a distance &i on the wrong side

of the boundary, and E)i = () at or on the
right side of the boundary.

For an error to occur we have & > 1, so
l

2%

1s an upper bound on the number of training errors.

Glen Cowan Statistical Methods for LHC Physics
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Cost function for nonseparable case

To limit the magnitudes of the E,i we can define the error function that

we minimize to determine w to be

E(w)=— W[+

e

where C 1s a cost parameter we must choose that limits the amount
of misclassification. It turns out that for k=1 or 2 this 1s a quadratic

programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian

1
LD:Z ai_Ez o0y, Y XX,
l 1, ]

where the constraints on the a become ()< X, < C.
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know 1s useful only 1n limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

-

¢(x)=(@,(x),....9,(x))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with ¢(x) appearing in the place of x.

Glen Cowan Statistical Methods for LHC Physics
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier output 1s

)’(x)zz X;y; X X+Db
so 1n the feature space this becomes

y(x)=3 o, (x,)-P(x)+b

Glen Cowan Statistical Methods for LHC Physics
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

K(x,x")=¢(x)@(x')
Functions having this property must satisfy Mercer's condition
f K(x,x")g(x)g(x")dxdx'>0
for any function g where f gz( x) d x 1s finite.

So we don't even need to find explicitly the feature space transformation
d(x), we only need a kernel.

Glen Cowan Statistical Methods for LHC Physics



Finding kernels

There are a number of techniques for finding kernels, e.g., constructing
new ones from known ones according to certain rules (ctf. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(x,x")=(x-x'+0)" polynomial
2
—Hx—x’ _
K(x,x ')ZeXp > Gaussian
20

K(x,x')=tanh(k(x-x')+0) sigmoidal

Glen Cowan Statistical Methods for LHC Physics 38



Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the ¢ of the Gaussian)
the cost parameter C (plays role of regularization parameter)

The training 1s relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

Glen Cowan Statistical Methods for LHC Physics 39



SVM in HEP

SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP. Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTATO02).

1 ! ! r .l I

signal AN
eff. ot Mol ML

0.4 g &t 1gSYM |
- —cuts

0.4 06 0.8 1
background eff.
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Multivariate analysis discussion
For all methods, need to check:

Sensitivity to statistically unimportant variables
(best to drop those that don’t provide discrimination);

Level of smoothness in decision boundary (sensitivity
to over-traimning)

Given the test variable, next step 1s e.g., select # events and
estimate a cross section of signal: 65 = (n —b)/esL

Now need to estimate systematic error...

[f e.g. training (MC) data = Nature, test variable 1s not optimal,
but not necessarily biased.

But our estimates of background » and efficiencies would then
be biased if based on MC. (True also for ‘simple cuts’.)

Glen Cowan Statistical Methods for LHC Physics 41
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Multivariate analysis discussion (2)

But 1n a cut-based analysis it may be easier to avoid regions
where untested features of MC are strongly influencing the
decision boundary.

Look at control samples to test joint distributions of inputs.

Try to estimate backgrounds directly from the data (sidebands).

The purpose of the statistical test 1s often to select objects for
further study and then measure their properties.

Need to avoid mput variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)

Statistical Methods for LHC Physics
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Software for multivariate analysis

TMWA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From t nva. sour cef or ge. net, also distributed with ROOT
Variety of classifiers
Good manual

St at Pat t er nRecogni ti on, I. Narsky, physics/0507143

Further info from ww. hep. cal t ech. edu/ ~nar sky/ spr. ht
Also wide variety of methods, many complementary to TMWA
Currently appears project no longer to be supported

Glen Cowan Statistical Methods for LHC Physics
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Background rejection versus Signal efficiency

Comparing multivariate methods (TMVA)

TMVA

1
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-§--HMatrt>c

0 01 02 03 ﬂ-l- 0.5 06 07 08
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Signal efficlency

Choose the best one!
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Bayesian vs. frequentist methods

Two schools of statistics use different interpretations of probability:

I. Relative frequency (frequentist statistics):

P(A) — [im times outcome is A

T — 00 n

II. Subjective probability (Bayesian statistics):

P(A) = degree of belief that A is true

In particle physics frequency interpretation most used, but subjective
probability can be more natural for non-repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists...

Glen Cowan Statistical Methods for LHC Physics 45



Frequentist Statistics — general philosophy

In frequentist statistics, probabilities are associated only with
the data, 1.e., outcomes of repeatable observations.

Probability = limiting frequency
Probabilities such as

P (Higgs boson exists),

P(0.117< o, <0.121),
etc. are either O or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.
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Bayesian Statistics — general philosophy

In Bayesian statistics, iterpretation of probability extended to
degree of belief (subjective probability). Use this for hypotheses:

probability of the data assuming _ o
hypothesis 71 (the likelithood) N o prior probability, 1.e.,

before seeing the data

o _ _ P@H)(H)
/.P \H}a) [ P(Z/H)x(H) dH

posterior probability, 1.¢., \ normalization imvolves sum
after seeing the data over all possible hypotheses

Bayesian methods can provide more natural treatment of non-
repeatable phenomena:
systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)

Glen Cowan Statistical Methods for LHC Physics
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Statistical vs. systematic errors

Statistical errors:

How much would the result fluctuate upon repetition
of the measurement?

Implies some set of assumptions to define
probability of outcome of the measurement.

Systematic errors:

Glen Cowan

What is the uncertainty in my result due to
uncertainty in my assumptions, e.g.,

model (theoretical) uncertainty;
modelling of measurement apparatus.

The sources of error do not vary upon repetition of the
measurement. Often result from uncertain
value of, e.g., calibration constants, efficiencies, etc.
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Systematic errors and nuisance parameters

Response of measurement apparatus 1s never modelled pertectly:

model: y = a + Bz

truth: y = o + Bz + 7:1:2 +exc+ ...

y (measured value)

x (true value)

Model can be made to approximate better the truth by mcluding
more free parameters.

systematic uncertainty <= nuisance parameters
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Example: fitting a straight line

Data: (2, 45,04) ,i = 1,..

1. o L . ; . — . ; 2
Model: measured y, independent, Gaussian:  y; ~ N(u(x;),07)

u(z; 0g,01) = 0g + 012,

assume x, and o, known.

Goal: estimate 6,

(don’t care about 6)).

Glen Cowan

L r

1.6 =

14 F

12 =

0.8

data -
fit -

0.3
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Frequentist approach

71 1 (i — p(@i; 60, 01))3
LB, 1) = ||
(60,01) :111;[1 e OB 2 |
n ] - P 9 2
x*(00,01) = —2In L(0g,61)+const = Y (yi M(uﬂz-;’oa 1))°
i=1 g;

Standard deviations from 011

0.1 F

tangent lines to contour

0.09

XQZXﬁwin'l'l' |

0.07

01 s
Correlation between os
By, 61 causes errors al Ofy — L
D03 - } !
to 1ncrease. 0.02 l .
1.24 1.26 1.28 1.3 1.32 1.34
0o
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Frequentist case with a measurement 7, of 6,

" (y; — p(zi; 60,601))° |, (01 —t1)?
X2(90191)=Z(y p(x;; 60,01)) +(1 1)_

2 2
i=1 g; O¢

0.11 T T T T

The information on 6,

0.1 I

D.08 |-

improves accuracy of 6o -

D.08 |-

01

D.06 |-

0.05 |- szmn +1

0.04 - -
Tg_ —
fo
0.03 |- -1
ulnz 1 i 1 |
1.24 1.26 1.28 1.3 1.32
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Bayesian method

We need to associate prior probabilities with 6, and 6,, e.g.,

m(0p,01) = mo(0p) m1(01)  reflects ‘prior ignorance’, in any
ro(8g) = const. case much broader than 7.(6,)
2 2 :
m1(07) = - e_(ai_tl) / 2‘% «— based on previous
V274 measurement

Putting this into Bayes’ theorem gives:

T
7 L —(ui—u(2i60,61))%/202 1 —(01-11)2/202
p(0o, 01]7) — e~ Wi—nlziifo,01 F iy —— & 4
‘ 'il;[l 27—’751’ V 2’?’1’0}51
\ a
x, f
posterior o likelihood X prior
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Bayesian method (continued)

We then integrate (marginalize) p(6,, 6, | x) to find p(6, | x):

p(Oolz) = [}J(ﬁ’o,@l\ﬂf) doy .

In this example we can do the integral (rare). We find

1 —(Hg—gg)Q/QJQ ;
Oolz) = e %  with
p(fo|z) v
o = same as ML estimator
Thy = g, (same as before)

Ability to marginalize over nuisance parameters 1s an important
feature of Bayesian statistics.
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Digression: marginalization with MCMC

Bayesian computations mvolve integrals like

p(6ole) = [ p(bo, 01]x) dbs .

often high dimensionality and impossible 1n closed form,

also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Cham Monte Carlo (MCMC) has revolutionized
Bayesian computation.

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’,

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than \r .

—

Basic idea: sample multidimensional 6,
look, e.g., only at distribution of parameters of interest.

Statistical Methods for LHC Physics
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Example: posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

011 ¢
01 o1 E
0.09 f
o8 FC
007 F
0.06 E
0.05 E

0.04 b

160
140 f
120 f
100 f
G0 f
G0 f
40 f
Z0 f

95D
200
150
100

50 F

1 vy Py by L
0
1.25 1275 1.3 1.325 D04

I IIII

il
1.2 1275 7

0o

11 Il
1.3258

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.

Although numerical values of answer here same as in frequentist
case, interpretation 1s different (sometimes unimportant?)

Glen Cowan
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Bayesian method with vague prior

Suppose we don’t have a previous measurement of ¢, but
rather some vague mformation, e.g., a theorist tells us:

6, > 0 (essentially certain);
6, should have order of magnitude less than 0.1 ‘or so’.
Under pressure, thle theorist sketches the following prior:
?‘-1(91):_6—91/7! @i >0, r=01.
T
From this we will obtain posterior probabilities for 6, (next slide).

We do not need to get the theorist to ‘commut’ to this prior;
final result has ‘1f-then’ character.

Glen Cowan Statistical Methods for LHC Physics
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Sensitivity to prior

Vary n(6) to explore how extreme your prior beliefs would have
to be to justify various conclusions (sensitivity analysis).

Try exponential with different  Try different functional forms...

40 T T T T 23 T
t= 0.0 Hal prior ——
a5 k T=000 - - 78y exponential © = 0.1
T=l] —- i xi8)) truncated Gaussian, ¢ = 0.1
30
=T 2 15 | F. Y
A
20 | - S \A
o ' 4
15 4 1 /i
10 f3
5 Fii x
sk - ;’
Vi Y
0 - = 0 _.-:-w'-"’:' i | e~
12 128 1.3 1.48 1.2 125 1.3 1.35 1.4 1.48
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Outlook for Bayesian methods in HEP
Bayesian methods allow (indeed require) prior information about
the parameters being fitted.
This type of prior information can be difficult to
incorporate into a frequentist analysis

This will be particularly relevant when estimating uncertainties on
predictions of LHC observables that may stem from theoretical
uncertamties, parton densities based on inconsistent data, etc.

Prior 1ignorance 1s not well defined. If that’s what you’ve got,

don’t expect Bayesian methods to provide a unique solution.
Try a reasonable variation of priors -- 1f that yields
large variations 1n the posterior, you don’t have much
information coming in from the data.

You do not have to be exclusively a Bayesian or a Frequentist
Use the right tool for the right job
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Statistical combination of Higgs channels in ATLAS

Status of Higgs search recently published in ATLAS "CSC Book™
Expected Performance of the ATLAS Experiment: Detector,
Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Several statistical methods under study for combination of channels.
Here show method using “profile likelihood™

For now, concentrate on combining "discovery modes":
H-> vy
H=> W'W™ = evuv
H->Z7Z7Z® > 4] (I=e, W)
H=>t1=>1,Ilh

Some modes not yet included, e.g., WW = evev, WVHV, IVqq;
- sensitivity will improve
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Higgs production at the LHC

SM Higgs production
T T T T | T T T

T T T TTTT

y/

qq — Wh

bh —h 1

gg.qq — tth

LHC

1 III.IIII| 1 III-1III| 1 [ N

TeV4LHC Higgs working| group
—_ I I I I I 1
g t
aoanOHS0D00 = 100 200
H 0o
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Statistical combination of channels
Treat systematics by means of profile likelihood method.

Considers fixed-mass hypothesis; "look-elsewhere-effect” must
be studied separately.

NB yy and WW analyses also study floating-mass fits.

Approximate methods for discovery/exclusion significance.

Valid for L > 2 tb™1. For lower L need MC methods.

Other developments ongoing (Bayesian, CL , look-elsewhere effect,...)

Glen Cowan Statistical Methods for LHC Physics 62



Statistical model
Bin i of a given channel has n, events, expectation value 1s

Eln;| = pLlejo; B+ b; = ps; + b

/

[ 1s global strength parameter, common to all channels.
U =0 means background only, (/=1 1s SM hypothesis.

Expected signal and background are:

8; = 8 (r:0.)dx .
i tot Aiui fc( . ) ' - btot, BS, Bb arc
nuisance par ameters

b; = bt fo(x;0p) dx

bin i

63
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The likelihood function

The single-channel likelihood function uses Poisson model

for events 1n signal and control histograms:

L . data in control
data in signal histogram / hi
1stogram

M M

- 18: + b ) _ w |
L(1,6) =[] u <1 !)J) e~ +0) T L —

, 7.2
ot 3%

here signal rate 1s @ represents all nuisance parameters,
only parameter e.g., background rate, shapes
of interest

There is a likelihood L (1, 0) for each channel,i=1, ..., N.
The full likelihood function is L( H Li(j1,6;)
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Profile likelihood ratio

To test hypothesized value of U, construct profile likelihood ratio:

2 Maximized L for given U
L(n,0)

A(p) = =22
L(/t,0) « Maximized L

Equivalently use g, = — 2 In A(L):
data agree well with hypothesized [/ = g, small
data disagree with hypothesized (1 = g, large

Distribution of g, under assumption of [ related to chi-square

(Wilk's theorem, approximation valid for roughly L > 2 fb™):

1 1
f(qALLLL) ~ EfX%(q“) + 55((],u)
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p-value / significance of hypothesized U

Test hypothesized by giving
p-value, probability to see data
with < compatibility with u
compared to data observed:

Equivalently use significance,
Z, defined as equivalent number
of sigmas for a Gaussian
fluctuation 1n one direction:

Z=3"1-p)
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Sensitivity

Discovery:
Generate data under s+b (U = 1) hypothesis;
Test hypothesis =0 = p-value =» Z.

Exclusion:
Generate data under background-only (1 = 0) hypothesis;
Test hypothesis p = 1.
If 4= 1 has p-value < 0.05 exclude m, at 95% CL.

Estimate median significance by setting data equal to expectation
values (Asimov data) or by using MC.

For median, can combine significances of individual channels.

For significance of e.g. a real data set, need global fit.
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ATLAS combined discovery significance
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ATLAS combined 95% CL exclusion limits

1

expecied p-value of p

Glen Cowan

1
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Summary of ATLAS Higgs combination
Study shown only uses Higgs channels most relevant to discovery
some modes not yet included = sensitivity will improve
Systematic uncertainties treated using profile likelihood.

Other developments ongoing (Bayesian, CL , look-elsewhere effect,...)

Due to approximations used, combined results valid for L > 2 fb™

For L = 2fb™1 for ATLAS:
expected discovery So or more in 143 <m; < 179 GeV,
expected upper limit on m,; at 95% CL 1s 115 GeV

Discussions underway on ATLAS/CMS combinations.

Software for global fit and full combination under development as
part of the RooStats project (joint ATLAS/CMS/RooFit/Root)
available as part of ROOT 5.22
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Outlook for data analysis at the LHC

Recent developments from Machine Learning provide some new tools
for event classification with a number of advantages over those methods
commonly used in HEP, e.g.,

Boosted decision trees

Support Vector Machines

Bayesian methods can allow for a more natural treatment of
non-repeatable phenomena, e.g., model uncertainties.
MCMC can be used to marginalize posterior probabilities

Active development of combination methods for searches
Profile likelihood, Bayesian, “LEP”-style, ...

Software for these methods now much more easily available, expect
rapid development as the LHC begins to produce real results.
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Quotes I like

“Keep it simple.
As simple as possible.
Not any simpler.”

— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder

Statistical Methods for LHC Physics
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Extra slides
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Probability — quick review

Frequentist (A = outcome of | ~ outcome is A
repeatable observation): P(A) = lim ”

Subjective (A = hypothesis): P(A) = degree of belief that A is true
Conditional probability: P(A|B) = P(ﬁ(;f )

P(B|A)P(A)  P(B|A)P(A)
P(B) = P(B|A)P(A)

Bayes' theorem: P(A|B) =
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MCMC basics: Metropolis-Hastings algorithm

Goal: given an n-dimensional pdf p(g) :
generate a sequence of points g7 95, 0, . ..
Proposal density ¢(0: 50)

_—es Gaussian centred
2) Generate § ~ q(0; 50) about 0o

1) Start at some point H_b

3) Form Hastings test ratio o = min

p(0)q(0o; 6) }
p(00)q(6; 0p)
4) Generate u ~ Uniform[0, 1]

S5) It u<a, =0 , «— move to proposed point

-t

else 61 = 6y «— old point repeated

6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
each new point depends on the previous one).

For our purposes this correlation 1s not fatal, but statistical
errors larger than naive | /p,

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation. Often take proposal

density symmetric: a( 7 9—*0> = ¢( 50; 0 }
p(6)
p(60)

I.e. if the proposed step is to a point of higher p(g) , take it;

Test ratio 1s (Metropolis-Hastings): o = min |1

if not, only take the step with probability ;,(9) /p(8,) .
If proposed step rejected, hop in place.
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Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow p(8) .

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.
Check result with different proposal density.

Try using a number of different starting points and look
at spread in results.

Glen Cowan Statistical Methods for LHC Physics
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The "look-elsewhere effect"

Look for Higgs at many m,, values -- probability of seeing a large

fluctuation for some m,, increased.

Combined significance shown here relates to fixed m,;,.
False discovery prob enhanced by ~ mass region explored / g,

For H-yy and H>WW, studied by allowing m, to float in fit:

8 B: T ' ' T ' T T =
g I~ —.— Cnmhired.ﬂthsseduithl‘u‘lHlixed o H é
7 --4-- Combined, fit bazed with M, floated =
E..g - ATLAS —— Inclusive,II[hElsethhI‘u'lHﬁmd — W
| 6 :— A ==ofg== Inclusive, {it bazed with I'u'lH floated —:
g s L = 10 fb — Inclusive, number courting =
i 5 = —t combined, number counting =
[} = =
g} = =
n = = | =
g 5 el -
i e aawieeeerEECE _-‘.."--"'""""'“—_--a—...__.__. -
3" el - R =
S SRSSR————
2 e GEELE e =
= =
o1 . | ; | . | | [
120 125 130 135 140

Higgs boson mass [GeV]
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Expected discovery significance
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Expected p-value of SM vs m,

1
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Example from validation exercise: ZZ = 4]

-
=2
—r
=

Distributions of g, for 2, 10 fb™ from MC compared to ¥2)*

(One minus)

cumulative

distributions.

Band gives 68%

* 3% CL limits.

—— «—— S50glevel
A 10 12 14 18

a,
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A more general fit (symbolic)

Given measurements: htoiPt o™, i=1,...,n,
and (usually) covariances: Vgtat, V?’S :

Predicted value: u(x;;0), expectationvalue E[y;] = u(z;;0) + b,

7
control variable parameters bias

1 - — tat SYyS
Often take: V;; = V31" + Vijy
Minimize x2(0) = (7 — @(0))' V(7 - [@(9))

Equivalent to maximizing L(6) ~ e %7, 1.e., least squares same
as maximum likelithood using a Gaussian likelthood function.
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[ts Bayesian equivalent
Take  L(710,5) ~ exp | -3 (7= i(6) - )T Viza (7 — i(®) - )

6 Vi

- 1
(b)) ~ exp [—5

Joint probability
m9(0) ~ const. / for all parameters

and use Bayes’ theorem:  p(6, b|7) < L(6, b)wg(0) (D)

To get desired probability for €, integrate (marginalize) over b:
p(017) = [ p(0,817) db

— Posterior 1s Gaussian with mode same as least squares estimator,
o, same as from y* = »* . + 1. (Back where we started!)
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The error on the error
Some systematic errors are well determined

Error from finite Monte Carlo sample

Some are less obvious
Do analysis 1 » ‘equally valid” ways and
extract systematic error from ‘spread’ in results.
Some are educated guesses
Guess possible size of missing terms 1n perturbation series;
vary renormalization scale (/2 < Q < 2u ?)
Can we incorporate the ‘error on the error’?

(cf. G. D’ Agostini 1999; Dose & von der Linden 1999)
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A prior for bias 7,(b) with longer tails

b2
exp [—1 ! ] ws(s;) ds;
8;0

T
100 ; : \
- i .'2 SETE
=3

Represents ‘error
T, ( b ) I ;
o1 |- on the error’;
G L standard deviation

of 7.(s) 1s o,

le-06 [

1e-08

.rj
le-10
-8

Gaussian (6, =0)  P(|b|>40,,) = 6.3 x 10°
o, = 0.5 P(b| >40.,) = 6.5 % 102
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A simple test

Suppose fit effectively averages four measurements.

Take o, = o,,, = 0.1, uncorrelated.
Case #1: data appear compatible Posterior p(u]y):
- pluly) |~ ==
= 1.5
= Al
5 |
> |
<
E = s

experiment L

Usually summarize posterior p(uly) 0s=0.0: [ =1.000=x0.071
with mode and standard deviation: os=05: f=1.000+0.072
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Simple test with inconsistent data

Case #2: there 1s an outhier

measurement

Glen Cowan

=
in

Posterior p(1y):

T
_oast Squanes ——--
Bayes, o=0.5 ------

|

p(uly)|

5
4
3
'2 -
1
a

| |
1 2

1
3

experiment

— Bayesian fit less sensitive to outlier.

— Error now connected to goodness-of-fit.

0'520.0:
o =10.5"
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Goodness-of-fit vs. size of error

In LS fit, value of minimized »? does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high »? corresponds to a larger error (and vice versa).

post- | | S 2000 repetitions of
erior °*°’ A

experiment, o, = 0.5,

0.0&

ou s here no actual bias.

0.07v5

n.ar

|~ o, from least squares

0065 —- -

o0& | ] | |
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