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Outline
Lecture 1:  Introduction and review of fundamentals

Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Introduction to statistical tests

Lecture 2:  More on statistical tests
Multivariate methods
Neural networks

Lecture 3:  Framework for full analysis
p-values, discovery, limits
Tests from likelihood ratio

Lecture 4:  Further topics
Nuisance parameters and systematic uncertainties 
More parameter estimation, Bayesian methods
Experimental sensitivity
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Some statistics books, papers, etc. 
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.
Luca Lista, Statistical Methods for Data Analysis in Particle 
Physics, Springer, 2017.
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD)
M. Tanabashi et al. (PDG), Phys. Rev. D 98, 030001 (2018); see 
also pdg.lbl.gov sections on probability, statistics, Monte Carlo
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Theory ↔ Statistics ↔ Experiment

+ simulation
of detector
and cuts

Theory (model, hypothesis): Experiment:

+ data
selection
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Data analysis in particle physics 
Observe events (e.g., pp collisions) and for each, measure
a set of characteristics:

particle momenta, number of muons, energy of jets,...

Compare observed distributions of these characteristics to 
predictions of theory.  From this, we want to:

Estimate the free parameters of the theory:

Quantify the uncertainty in the estimates:

Assess how well a given theory stands in agreement 
with the observed data:

To do this we need a clear definition of PROBABILITY
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A definition of probability 
Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

Also define conditional 
probability of A given B:

Subsets A, B independent if:

If A, B independent,



G. Cowan UGR 2020 / Statistics Lecture 1 7

Interpretation of probability
I. Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
• In particle physics  frequency interpretation often most useful,
but subjective probability can provide more natural treatment of 
non-repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...
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Bayes’ theorem
From the definition of conditional probability we have,

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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The law of total probability

Consider a subset B of 
the sample space S,

B ∩ Ai

Ai

B

S

divided into disjoint subsets Ai
such that ∪i Ai = S,

→

→

→ law of total probability

Bayes’ theorem becomes
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An example using Bayes’ theorem
Suppose the probability (for anyone) to have a disease D is:

← prior probabilities, i.e.,
before any test carried out

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly
identify a person with the disease

← probabilities to (in)correctly
identify a healthy person

Suppose your result is +.  How worried should you be?

G. Cowan 
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Bayes’ theorem example (cont.)
The probability to have the disease given a + result is

i.e. you’re probably OK!

Your viewpoint:  my degree of belief that I have the disease is 3.2%.

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability

G. Cowan 
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations (shorthand:     ).

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < αs < 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability).
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Bayesian Statistics − general philosophy 
In Bayesian statistics, use subjective probability for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayes’ theorem has an “if-then” character:  If your prior
probabilities were π(H), then it says how these probabilities
should change in the light of the data.

No general prescription for priors (subjective!)
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Hypothesis, likelihood
Suppose the entire result of an experiment (set of measurements)
is a collection of numbers x.  A (simple) hypothesis is a rule that 
assigns a probability to each possible data value:

Note:
1)  For the likelihood we treat the data x as fixed.
2)  The likelihood function L(θ) is not a pdf for θ. 

Often we deal with a family of hypotheses labeled by one or
More undetermined parameters (a composite hypothesis):

=   the likelihood of H

=    the “likelihood function”
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f (x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed
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Frequentist parameter estimation
Suppose we have a pdf characterized by one or more parameters:

random variable

Suppose we have a sample of observed values:

parameter

We want to find some function of the data to estimate the 
parameter(s):

← estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.
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Properties of estimators
Estimators are functions of the data and thus characterized by a 
sampling distribution with a given (co)variance:

In general they may have a nonzero bias:

Want small variance and small bias, but in general cannot optimize
with respect to both; some trade-off necessary.

biasedlarge
variance

best
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Maximum Likelihood (ML) estimators
The most important frequentist method for constructing estimators 
is to take the value of  the parameter(s) that maximize the 
likelihood (or equivalently the log-likelihod):

In some cases we can find the ML estimator as a closed-form 
function of the data; more often it is found numerically.
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ML example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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ML example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
generate 50  values
using τ = 1:

We find the ML estimate:
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ML example:  parameter of exponential pdf (3)

For the ML estimator 

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Variance of estimators:  Monte Carlo method
Having estimated our parameter we now need to report its
‘statistical error’, i.e., how widely distributed would estimates
be if we were to repeat the entire measurement many times.

One way to do this would be to simulate the entire experiment
many times with a Monte Carlo program (use ML estimate for MC).

For exponential example, from 
sample variance of estimates
we find:

Note distribution of estimates is roughly
Gaussian − (almost) always true for 
ML in large sample limit.



G. Cowan UGR 2020 / Statistics Lecture 1 23

Variance of estimators from information inequality
The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only ML):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

Minimum Variance
Bound (MVB)
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Variance of estimators: graphical method
Expand ln L (θ) about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

i.e.,

→ to get , change θ away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Information inequality for N parameters
Suppose we have estimated N parameters   

The (inverse) minimum variance bound is given by the 
Fisher information matrix:

The information inequality then states that V - I-1 is a positive
semi-definite matrix, where                                  Therefore

Often use I-1 as an approximation for covariance matrix, 
estimate using e.g. matrix of 2nd derivatives at maximum of L.

N
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Frequentist statistical tests 
Suppose a measurement produces data x; consider a hypothesis H0
we want to test and alternative H1

H0, H1 specify probability for x:  P(x|H0), P(x|H1)

A test of H0 is defined by specifying a critical region w of the
data space such that there is no more than some (small) probability
α, assuming H0 is correct,  to observe the data there, i.e.,

P(x ∈ w | H0 ) ≤ α

Need inequality if data are
discrete.

α is called the size or 
significance level of the test.

If x is observed in the 
critical region, reject H0.

data space Ω

critical region w
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Definition of a test (2)
But in general there are an infinite number of possible critical 
regions that give the same significance level α.

So the choice of the critical region for a test of H0 needs to take 
into account the alternative hypothesis H1.

Roughly speaking, place the critical region where there is a low 
probability to be found if H0 is true, but high if H1 is true:
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Efficiencies, purity
Let  H0 = b (event is background, H1 = s (event is signal).

For each event test b.  If b rejected, “accept” as candidate signal.

To find purity of candidate signal sample, use Bayes’ theorem:

Here W is signal region
prior probability

posterior probability = signal purity 

background efficiency = εb = P(x ∈ W | b ) =  α

signal efficiency = εs = power =  P(x ∈ W | s ) = 1 - β
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Physics context of a statistical test
Event Selection: data = individual event; goal is to classify

Example:  separation of different particle types (electron vs muon)
or known event types (ttbar vs QCD multijet).
E.g. test H0 : event is background vs. H1 : event is signal.
Use selected events for further study.

Search for New Physics:  data = a sample of events.  Test null hypothesis

H0 : all events correspond to Standard Model (background only), 

against the alternative

H1 : events include a type whose existence is not yet established
(signal plus background) 

Many subtle issues here, mainly related to the high standard of proof 
required to establish presence of a new phenomenon.  The optimal statistical 
test  for a search is closely related to that used for event selection.



G. Cowan UGR 2020 / Statistics Lecture 1 31

Extra slides
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Random variables and probability density functions
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous.

Suppose outcome of experiment is continuous value x

→ f (x) = probability density function (pdf)

Or for discrete outcome xi with e.g. i = 1, 2, ... we have

x must be somewhere

probability mass function

x must take on one of its possible values

G. Cowan 
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Other types of probability densities
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn) 

Sometimes we want only pdf of some (or one) of the components

→ marginal pdf

→ joint pdf

Sometimes we want to consider some components as constant

→ conditional pdf

x1, x2 independent if 

G. Cowan 
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Expectation values
Consider continuous r.v. x with pdf  f (x).  

Define expectation (mean) value as

Notation (often):                         ~ “centre of gravity” of pdf. 

For a function y(x) with pdf g(y), 

(equivalent)

Variance:

Notation:

Standard deviation:

σ ~ width of pdf, same units as x.

G. Cowan 
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Covariance and correlation
Define covariance cov[x,y] (also use matrix notation Vxy) as  

Correlation coefficient (dimensionless) defined as

If x, y, independent, i.e., ,   then

→ x and  y, ‘uncorrelated’

N.B. converse not always true.

G. Cowan 
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Correlation (cont.) 

G. Cowan 
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Some distributions
Distribution/pdf Example use in HEP
Binomial Branching ratio
Multinomial Histogram with fixed N
Poisson Number of events found
Uniform Monte Carlo method
Exponential Decay time
Gaussian Measurement error
Chi-square Goodness-of-fit
Cauchy Mass of resonance
Landau Ionization energy loss
Beta Prior pdf for efficiency
Gamma Sum of exponential variables
Student’s t Resolution function with adjustable tails
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Binomial distribution
Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 ≤ n ≤  N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

But order not important; there are

ways (permutations) to get n successes in N trials, total 
probability for n is sum of probabilities for each permutation.
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Binomial distribution  (2)
The binomial distribution is therefore

random
variable

parameters

For the expectation value and variance we find:
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Binomial distribution  (3)
Binomial distribution for several values of the parameters:

Example:  observe N decays of W±,  the number n of which are 
W→μν is a binomial r.v., p = branching ratio.
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Multinomial distribution
Like binomial but now m outcomes instead of two, probabilities are

For N trials we want the probability to obtain:

n1 of outcome 1,
n2 of outcome 2,

⠇
nm of outcome m.

This is the multinomial distribution for



G. Cowan UGR 2020 / Statistics Lecture 1 42

Multinomial distribution (2)
Now consider outcome i as ‘success’, all others as ‘failure’.

→ all ni individually binomial with parameters N, pi

for all i

One can also find the covariance to be

Example:  represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution
Consider binomial n in the limit

→ n follows the Poisson distribution:

Example:  number of scattering events
n with cross section σ found for a fixed
integrated luminosity, with
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Uniform distribution
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is:

N.B.  For any r.v. x with cumulative distribution F(x),
y = F(x) is uniform in [0,1].

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with
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Exponential distribution
The exponential pdf for the continuous r.v. x is defined by:

Example:  proper decay time t of an unstable particle

(τ = mean lifetime)

Lack of memory (unique to exponential):
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Gaussian distribution
The Gaussian (normal) pdf for a continuous r.v. x is defined by:

Special case: μ = 0, σ2 = 1   (‘standard Gaussian’):

(N.B. often μ, σ2 denote
mean, variance of any
r.v., not only Gaussian.)

If y ~ Gaussian with μ, σ2, then  x = (y - μ) /σ follows φ(x).
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Gaussian pdf and the Central Limit Theorem
The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it.  This follows from the Central Limit Theorem:

For n independent r.v.s xi with finite variances σi
2, otherwise

arbitrary pdfs, consider the sum

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s.

In the limit n → ∞, y is a Gaussian r.v. with
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Central Limit Theorem (2)
The CLT can be proved using characteristic functions (Fourier
transforms), see, e.g., SDA Chapter 10.

Good example:  velocity component vx of air molecules.

OK example:  total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example:  energy loss of charged particle traversing thin
gas layer.  (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)

For finite n, the theorem is approximately valid to the
extent that the fluctuation of  the sum is not dominated by
one (or few) terms. 

Beware of measurement errors with non-Gaussian tails.
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Multivariate Gaussian distribution
Multivariate Gaussian pdf for the vector 

are column vectors, are transpose (row) vectors, 

For n = 2 this is

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient.
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Chi-square (χ2) distribution
The chi-square pdf for the continuous r.v. z (z ≥ 0) is defined by

n = 1, 2, ... =  number of ‘degrees of
freedom’ (dof)

For independent Gaussian xi, i = 1, ..., n, means μi, variances σi
2,

follows χ2 pdf with n dof.

Example:  goodness-of-fit test variable especially in conjunction
with method of least squares.
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Cauchy (Breit-Wigner) distribution
The Breit-Wigner pdf for the continuous r.v. x is defined by

(Γ = 2, x0 = 0 is the Cauchy pdf.)

E[x] not well defined,   V[x] →∞.

x0 = mode (most probable value)

Γ = full width at half maximum

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ...

Γ = decay rate (inverse of mean lifetime)
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Landau distribution
For a charged particle with β = v /c traversing a layer of matter
of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

+ - + -

- + - +
β

d

Δ
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Landau distribution  (2)

Long ‘Landau tail’
→ all moments ∞

Mode (most probable 
value) sensitive to β ,

→ particle i.d.
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Beta distribution

Often used to represent pdf 
of continuous r.v. nonzero only
between finite limits. 
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Gamma distribution

Often used to represent pdf 
of continuous r.v. nonzero only
in [0,∞].

Also e.g. sum of n exponential
r.v.s or time until nth event
in Poisson process ~ Gamma
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Student's t distribution

ν = number of degrees of freedom
(not necessarily integer)

ν = 1 gives Cauchy,

ν → ∞ gives Gaussian.
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Example of ML with 2 parameters
Consider a scattering angle distribution with x = cos θ,

or if xmin < x < xmax, need always to normalize so that 

Example:  α = 0.5, β = 0.5, xmin = -0.95, xmax = 0.95, 
generate n = 2000 events with Monte Carlo.
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Example of ML with 2 parameters:  fit result
Finding maximum of ln L(α, β) numerically (MINUIT) gives

N.B. No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or χ2). 

(Co)variances from (MINUIT routine 
HESSE)
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Two-parameter fit:  MC study
Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~ true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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The ln Lmax - 1/2 contour

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse φ related to correlation:

Correlations between estimators result in an increase
in their standard deviations (statistical errors).

The α, β plane for the first
MC data set


