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Outline
Lecture 1:  Introduction and review of fundamentals

Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Introduction to statistical tests

Lecture 2:  More on statistical tests
Multivariate methods
Neural networks

Lecture 3:  Framework for full analysis
p-values, discovery, limits
Tests from likelihood ratio

Lecture 4:  Further topics
Nuisance parameters and systematic uncertainties 
More parameter estimation, Bayesian methods
Experimental sensitivity
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Prelude to statistical tests:
A simulated SUSY event

high pT
muons

high pT jets 
of hadrons

missing transverse energy

p p

G. Cowan 
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Background events

This event from Standard 
Model ttbar production also
has high  pT jets and muons,
and some missing transverse
energy.

→ can easily mimic a 
SUSY event.

G. Cowan 
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For each reaction we consider we will have a hypothesis for the
pdf of x , e.g., p(x|b), p(x|s)

Statistical tests for event selection
Suppose the result of a measurement for an individual event 
is a collection of numbers

x1 = number of muons,

x2 = mean pT of jets,

x3 = missing energy, ...

follows some n-dimensional joint pdf, which depends on 
the type of event produced, i.e., was it 

E.g. here call H0 the background hypothesis (the event type we 
want to reject); H1 is signal hypothesis (the type we want).

G. Cowan 
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Selecting events
Suppose we have a data sample with two kinds of events,
corresponding to hypotheses H0 and H1 and we want to select 
those of type H1.

Each event is a point in space.  What ‘decision boundary’ 
should we use to accept/reject events as belonging to event 
types H0 or H1?

accept
H1

H0

Perhaps select events
with ‘cuts’:

G. Cowan 
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Other ways to select events
Or maybe use some other sort of decision boundary:

accept
H1

H0

accept
H1

H0

linear or nonlinear

How can we do this in an ‘optimal’ way?

G. Cowan 
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Test statistics
The boundary of the critical region for an n-dimensional data
space x = (x1,..., xn) can be defined by an equation of the form

We can work out the pdfs

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region.

So for an n-dimensional 
problem we have a 
corresponding 1-d problem.

where t(x1,…, xn) is a scalar test statistic.
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Test statistic based on likelihood ratio 
How can we choose a test’s critical region in an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test of
H0, (background) versus H1, (signal) the critical region should have

inside the region, and  ≤ c outside, where c is a constant chosen
to give a test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
G. Cowan 
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Neyman-Pearson doesn’t usually help
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

generate x ~ f (x|s)     →     x1,..., xN
generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).
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Approximate LR from histograms
Want t(x) = f(x|s)/ f(x|b) for x here

N (x|s) ≈ f (x|s)

N (x|b) ≈ f (x|b)

N
(x
|s
)

N
(x
|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells.
But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

→ Histogram method usually not usable for n > 1 dimension.

signal back-
ground
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods
Many new (and some old) methods esp. from Machine Learning:

Linear (Fisher) discriminant
(Deep) neural networks
Kernel density methods
Support Vector Machines
Decision trees

Boosting, Bagging

This is a large topic -- see e.g. 
http://www.pp.rhul.ac.uk/~cowan/stat/stat_2.pdf (from around p 38)

and references therein.  Below only a brief discussion of linear 
discriminant and neural networks.
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Resources on multivariate methods
C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009.

Gareth James, Daniela Witten, Trevor Hastie and Robert 
Tibshirani, An Introduction to Statistical Learning, Springer, 
2013.

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001

A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002.

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014.
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Software 
Rapidly growing area of development – two important resources:

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual, widely used in HEP

scikit-learn
Python-based tools for Machine Learning
scikit-learn.org

Large user community
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Linear test statistic

Suppose there are n input variables:  x = (x1,..., xn).  

Consider a linear function:

For a given choice of the coefficients w = (w1,..., wn) we will
get pdfs f (y|s) and f (y|b) :
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Linear test statistic

Fisher:  to get large difference between means and small widths 
for f (y|s) and f (y|b),  maximize the difference squared of the
expectation values divided by the sum of the variances:

Setting ∂J / ∂wi = 0 gives:

,



G. Cowan UGR 2020 / Statistics Lecture 2 19

The Fisher discriminant

The resulting coefficients wi define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, i.e., usually define test statistic as

Boundaries of the test’s
critical region are surfaces 
of constant y(x), here linear 
(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both 
multivariate Gaussians with same covariance but different means:

f (x|s)  = Gauss(μs, V)

f (x|b)  = Gauss(μb, V)
Same covariance 
Vij = cov[xi, xj]

In this case it can be shown 
that the Fisher discriminant is

i.e., it is a monotonic function of the likelihood ratio and thus
leads to the same critical region.  So in this case the Fisher
discriminant provides an optimal statistical test.
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The activation function
For activation function h(·) often use logistic sigmoid:
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Overtraining
Including more parameters in a classifier makes its decision boundary 
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points; 
the same boundary will not perform well on an independent test 
data sample (→ “overtraining”).

training sample independent test sample
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Monitoring overtraining
If we monitor the fraction of misclassified events (or similar, e.g., 
error function E(w)) for test and training samples, it will usually 
decrease for both as the boundary is made more flexible:

error
rate

flexibility (e.g., number 
of nodes/layers in MLP)

test sample
training sample

optimum at minimum of
error rate for test sample

increase in error rate
indicates overtraining
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Neural network example from LEP II
Signal:  e+e- → W+W- (often 4 well separated hadron jets)
Background:  e+e- → qqgg  (4 less well separated hadron jets)

← input variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Extra slides
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