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Outline
Lecture 1:  Introduction and review of fundamentals

Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Introduction to statistical tests

Lecture 2:  More on statistical tests
Multivariate methods
Neural networks

Lecture 3:  Framework for full analysis
p-values, discovery, limits
Tests from likelihood ratio

Lecture 4:  Further topics
Nuisance parameters and systematic uncertainties 
More parameter estimation, Bayesian methods
(Experimental sensitivity)
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Testing significance / goodness-of-fit
Suppose hypothesis H predicts pdf 
observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 
data space represents less 
compatibility with H than 
does the point less 

compatible
with H

more 
compatible
with H

This region therefore
has greater compatibility
with some alternative Hʹ.
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p-values

where π(H) is the prior probability for H.

Express ‘goodness-of-fit’ by giving the p-value for H:

p = probability, under assumption of H, to observe data with 
equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). In Bayesian statistics we do; 
use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

1 - TMath::Freq

TMath::NormQuantile



G. Cowan UGR 2020 / Statistics Lecture 3 6

Critical region from p-value
Often formulate a test in terms of the  p-value:

pH = P(x ∈ region of equal or lesser compatibility | H)

Distribution f(pH|H) uniform on [0,1], so can define critical
region of a test as the region where the p-value is ≤ α.

pH

f(pH|H)

0 1

f(pH|H′)

Formally the p-value relates only to H but the resulting test will 
have a given power with respect to a given alternative H′.

“Less compatible with H” means “more compatible with alt. H′ ”
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Confidence interval from inversion of a test

Carry out a test of size α for all values of a parameter θ.

The values that are not rejected constitute a confidence interval
for θ at confidence level CL = 1 – α.

The confidence interval will by construction contain the
true value of θ with probability of at least 1 – α.

The interval will cover the true value of θ with probability ≥ 1 - α.

Equivalently, the parameter values in the confidence interval have
p-values of at least α.

To find edge of interval (the “limit”), set pθ = α and solve for θ.
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background –
we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events
Goal is to make inference about s, e.g.,

test s = 0 (rejecting H0 ≈ “discovery of signal process”)

test all non-zero s (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

Take n itself as the test statistic, p-value for hypothesis s = 0 is
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Frequentist upper limit on Poisson parameter
Consider again the case of observing n ~ Poisson(s + b).

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found by solving ps = α for s:
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Frequentist upper limit on Poisson parameter
Upper limit sup at CL = 1 – α found from ps = α. 

nobs = 5, 

b = 4.5
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n ~ Poisson(s+b):  frequentist upper limit on s
For low fluctuation of n formula can give negative result for sup; 
i.e. confidence interval is empty.
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Limits near a physical boundary
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which
one has very little experimental sensitivity, e.g., very small s.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10-4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44



UGR 2020 / Statistics Lecture 3 16

Approximate confidence intervals/regions 
from the likelihood function

G. Cowan 

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem

G. Cowan 

Wilks’ theorem says (in large-sample limit and providing 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ= α and solve for tθ:

where
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Confidence region from Wilks’ theorem (cont.)

G. Cowan 

i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L
For n = 1 parameter, CL = 0.683, Qα = 1.

Parameter estimate and 
approximate 68.3% CL 
confidence interval:

Exponential example, now with only 5 events:
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Multiparameter case

G. Cowan 

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

G. Cowan 

Equivalently, Qα increases with n for a given CL = 1 – α.
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Extra slides
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The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf p(θ | x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from
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Bayesian prior for Poisson parameter
Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 



G. Cowan UGR 2020 / Statistics Lecture 3 25

Bayesian interval with flat prior for s
Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit.

Never goes negative.  Doesn’t depend on b if n = 0.
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p-values in cases with nuisance parameters
Suppose we have a statistic qθ that we use to test a hypothesized
value of a parameter θ, such that the p-value of θ is

But what values of ν to use for f (qθ|θ, ν)?
Fundamentally we want to reject θ only if pθ < α for all ν.

→ “exact” confidence interval

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be considered 
(resulting interval for θ “overcovers”).
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Profile construction (“hybrid resampling”)

Approximate procedure is to reject θ if pθ ≤ α where
the p-value is computed assuming the value of the nuisance
parameter that best fits the data for the specified θ:

“double hat” notation means profiled
value, i.e., parameter that maximizes
likelihood for the given θ.

The resulting confidence interval will have the correct coverage
for the points (θ, ˆ̂ν(θ)) .

Elsewhere it may under- or overcover, but this is usually as good
as we can do (check with MC if crucial or small sample problem).
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Large sample distribution of the profile 
likelihood ratio (Wilks’ theorem, cont.)

Suppose problem has likelihood L(θ, ν), with

← parameters of interest

← nuisance parameters

Want to test point in θ-space.  Define profile likelihood ratio:

,   where 

and define qθ = -2 ln λ(θ).

Wilks’ theorem says that distribution f (qθ|θ,ν) approaches the
chi-square pdf for N degrees of freedom for large sample (and 
regularity conditions), independent of the nuisance parameters ν.

“profiled” values of ν
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Prototype search analysis 
Search for signal in a region of phase space; result is histogram
of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

signal

where

background

strength parameter
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Prototype analysis (II)
Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

nuisance parameters (θs, θb,btot)
Likelihood function is
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The profile likelihood ratio
Base significance test on the profile likelihood ratio:

maximizes L for
specified μ

maximize L

Define critical region of test of μ by the region of data space
that gives the lowest values of λ(μ). 

Important advantage of profile LR is that its distribution becomes 
independent of nuisance parameters in large sample limit.
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Test statistic for discovery
Suppose relevant alternative to background-only (μ = 0) is μ ≥ 0.

So take critical region for test of μ = 0 corresponding to high q0
and > 0 (data characteristic for μ ≥ 0).

That is, to test background-only hypothesis define statistic

i.e. here only large (positive) observed signal strength is evidence 
against the background-only hypothesis.

Note that even though here physically μ ≥ 0, we allow 
to be negative.  In large sample limit its distribution becomes
Gaussian, and this will allow us to write down simple 
expressions for distributions of our test statistics.

µ̂

µ̂
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Distribution of q0 in large-sample limit
Assuming approximations valid in the large sample (asymptotic)
limit, we can write down the full distribution of q0 as

The special case μ′ = 0 is a “half chi-square” distribution: 

In large sample limit, f(q0|0) independent of nuisance parameters;
f(q0|μ′)  depends on nuisance parameters through σ.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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p-value for discovery
Large q0 means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed q0,obs is

use e.g. asymptotic formula

From p-value get 
equivalent significance,
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Cumulative distribution of q0, significance
From the pdf, the cumulative distribution of q0 is found to be 

The special case μ′ = 0 is 

The p-value of the μ = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formula 

μ = param. of interest
b = nuisance parameter
Here take s known, τ = 1.

Asymptotic formula is 
good approximation to 5σ
level (q0 = 25) already for
b ~ 20.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the p0 plot
The “local” p0 means the p-value of the background-only
hypothesis obtained from the test of μ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect.

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (μ = 1) at each mH.

ATLAS, Phys. Lett. B 716 (2012) 1-29

The blue band gives the
width of the distribution
(±1σ) of significances
under assumption of the
SM Higgs.



I.e. when setting an upper limit, an upwards fluctuation of the data 
is not taken to mean incompatibility with the hypothesized μ:  

From observed qμ find p-value:

Large sample approximation:   

95% CL upper limit on μ is highest value for which p-value is 
not less than 0.05.
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Test statistic for upper limits
For purposes of setting an upper limit on μ use

where

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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Monte Carlo test of asymptotic formulae 
Consider again n ~ Poisson (μs + b), m ~ Poisson(τb)
Use qμ to find p-value of hypothesized μ values.

E.g. f (q1|1) for p-value of μ =1.

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e.,
q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 
sensitivity”.

Here asymptotic formulae good
for s = 6, b = 9.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554
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How to read the green and yellow limit plots
For every value of mH, find the upper limit on μ.

Also for each mH, determine the distribution of upper limits μup one 
would obtain under the hypothesis of μ = 0.  

The dashed curve is the median μup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution.

ATLAS, Phys. Lett. B 716 (2012) 1-29
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Low sensitivity to μ
It can be that the effect of a given hypothesized μ is very small
relative to the background-only (μ = 0) prediction.

This means that the distributions f(qμ|μ) and f(qμ|0) will be
almost the same:
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Having sufficient sensitivity
In contrast, having sensitivity to μ means that the distributions
f(qμ|μ) and f(qμ|0)  are more separated: 

That is, the power (probability to reject μ if μ = 0) is substantially 
higher than α.  Use this power as a measure of the sensitivity.
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Spurious exclusion
Consider again the case of low sensitivity.  By construction the 
probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if μ = 0 (the power) is only slightly 
greater than α.

This means that with 
probability of around α = 5% 
(slightly higher), one 
excludes hypotheses to which 
one has essentially no 
sensitivity (e.g., mH = 1000 
TeV).

“Spurious exclusion”
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Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

and led to the “CLs” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.
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The CLs procedure

f (Q|b)    

f (Q| s+b)    

ps+bpb

In the usual formulation of CLs, one tests both the μ = 0 (b) and
μ > 0 (μs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb:
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The CLs procedure (2)
As before, “low sensitivity” means the distributions of Q under 
b and s+b are very close:

f (Q|b)    

f (Q|s+b)    

ps+bpb
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The CLs solution (A. Read et al.) is to base the test not on
the usual p-value (CLs+b), but rather to divide this by CLb
(~ one minus the p-value of the b-only hypothesis), i.e.,

Define:

Reject s+b 
hypothesis if: Increases “effective” p-value  when the two

distributions become close (prevents 
exclusion if sensitivity is low).

f (Q|b)    f (Q|s+b)    

CLs+b
= ps+b

1-CLb
= pb

The CLs procedure (3)
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Setting upper limits on μ = σ/σSM
Carry out the CLs procedure for the parameter μ = σ/σSM, 
resulting in an upper limit μup.

In, e.g., a Higgs search, this is done for each value of mH.  

At a given value of mH, we have an observed value of μup, and
we can also find the distribution f(μup|0):

±1σ (green) and ±2σ
(yellow) bands from toy MC;

Vertical lines from asymptotic 
formulae.


