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Outline

Lecture 1: Introduction and review of fundamentals
Probability, random variables, pdfs
Parameter estimation, maximum likelithood
Introduction to statistical tests

Lecture 2: More on statistical tests
Multivariate methods
Neural networks

Lecture 3: Framework for full analysis
p-values, discovery, limits
Tests from likelihood ratio

—p [ecture 4: Further topics
Nuisance parameters and systematic uncertainties
More parameter estimation, Bayesian methods
(Experimental sensitivity)
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Systematic uncertainties and nuisance parameters

In general our model of the data is not perfect:

)

model: p(x|f) = Ox
% - truth: p(z|f,v) =0x + ar’ + ,5:173 + .-

=3
=

X

Can improve model by including

p(x|0d) — p(x|l,
additional adjustable parameters. p(x|0) = p(x|f,v)

Nuisance parameter < systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Example: fitting a straight line

Data: (Zviayiaai) 7i: 17"'7”'

Model: y; independent and all follow y; ~ Gauss(u(x; ), o;)

,LL(CE, 907 91) — 90 + 913j 9
assume x; and o; known.
Goal: estimate 0,

Here suppose we don’t care
about 0, (example of a
“nuisance parameter’)
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Maximum likelihood fit with Gaussian data

In this example, the y; are assumed independent, so the
likelihood function 1s a product of Gaussians:

n 1 1 (y; — p(xy; g, 01))?
L(0g,01) = exp (—3 )
il;ll V2mo; 2 %2

Maximizing the likelihood 1s here equivalent to minimizing

v2(0p,601) = —21In L(0p, 01)+const = > (i M(xZQ 0,61)) .

i=1 g;

1.e., for Gaussian data, ML same as Method of Least Squares (LS)
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6, known a priori

nooo1 — u(zy; 00,01))?
L(6) = H exp _l(yz ,u(3322 0,01)) .
n o - 0 ,9 2
v2(0p) = —2In L(0p)4const = > (i “(%2 0,61)) .
. o
1=1 ()
— 105 7
T
For Gaussian y;, ML same as LS 9T ,
| g
. . . . -~ 9.3 i
Minimize y?> — estimator 0 . ‘
. 87r
Come up one unit from X2in | *
to find g, - 81r ™ %
0
7"?.26 1 .I28 T 1 .I3 1.32
8, %
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ML (or LS) fit of 6, and 6,

" (yi — p(xi; 0o, 01))°

x°(00,01) = —21In L(6g,01)+const = Y 5
i=1 a;
o o 0.11

Standard deviations from
tangent lines to contour 2

2 2
X = Xmin Tt 1. 0.074 |
Correlation between 0.056 |-

0o, 61 causes errors 0.038 - — o,

0
to 1ncrease.
0.02 1 H 1 H 1 P |
24 126 128 13 132 134

%
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If we have a measurement 7, ~ Gauss (0, 5,,)

1 (t1-61)2/2 1 (yi — p(zs; 60,61))°
L(f, 0) = ———e (1700°/27%, ex[ R
(60, 1) V2moy H \/%0,, P 022
n
(yi — p(xi;00,61))* | (t1 —61)*
X>(60,61) =) = ;_2 T
: 1 i1
o 011
0.092 -
The information on 6,
-~ 0.074
improves accuracy of 6 . -
0.056
0.038 —» «— O
0.00 A N S S
1.24 1.26 128 13 132 1.34
?
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The Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value 6.

Interpret probability of 8 as ‘degree of belief” (subjective).

Need to start with ‘prior pdf” m(6), this reflects degree
of belief about 8 before doing the experiment.

Our experiment has data x, — likelihood function L(x|0).

Bayes’ theorem tells how our beliefs should be updated 1n
light of the data x:

L(x|0)7(6)

p(ble) = [ L(2|0")=(6") 4o’

x L(x|0)7(0)

Posterior pdf p(0 | x) contains all our knowledge about 6.
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Bayesian method

We need to associate prior probabilities with 6, and 6, e.g.,

m(00,01) = mo(fo) 71(01)  ‘non-informative’, in any
m0(fp) = const. ~— case much broader than L(0p)
2 2 .
m1(01) = %e_(el_tl) /291« based on previous
Toh measurement
Putting this into Bayes’ theorem gives:
1 : 2 /5,2 1 —(01—t1)2/202
—(yi—1(490,01))? /207 (61—t1)%/20;
p(90791|y) X H \/_O'Z ™0 \/ﬂgtle 1
posterior & likelithood X prior
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Bayesian method (continued)

We then integrate (marginalize) p(6,, 6, | x) to find p(8, | x):

p(6olz) = [ p(80,011) db1 .

In this example we can do the integral (rare). We find

1 —(0p0—00)? /202 .
p(Oplx) = e (00=00)%/273, with
V2moy,
o = same as ML estimator
09y = O, (same as before)

Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.
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Digression: marginalization with MCMC

Bayesian computations involve integrals like

p(6ol2) = [ p(00, 61x) dby .

often high dimensionality and impossible in closed form,

also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.

MCMC (e.g., Metropolis-Hastings algorithm) generates
correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;

effective stat. error greater than if all values independent .

Basic idea: sample multidimensional @,
look, e.g., only at distribution of parameters of interest.
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MCMC basics: Metropolis-Hastings algorithm
Goal: given an n-dimensional pdf p(g) :

generate a sequence of points 51, 52, 53, .

Proposal density q(6; 0)

Pt Gaussian centred
2) Generate 6 ~ q(0: ) about 6o

1) Start at some point 50

3) Form Hastings test ratio o« = min |1

p(6)q(fg; 0) ]
p(00)q(6; 0p)
4) Generate u ~ Uniform|O, 1]

5) If u<a, 01 = 5, <— move to proposed point

else 61 = 0p +— old point repeated
6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
cach new point depends on the previous one).

For our purposes this correlation 1s not fatal, but statistical
errors larger than 1f points were independent.

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation. Often take proposal
density symmetric: q(6; 0g) = q(6p; 0)

p(0)
p(0o)

I.e. 1f the proposed step 1s to a point of higher p(g) , take 1t;
if not, only take the step with probability p(g) / p(éb) :
If proposed step rejected, hop in place.

Test ratio 1s (Metropolis-Hastings): o = min |1,
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Example: posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

61 0.085 ¢

0.09
0.085
Q.08
0.075
0.07
0.065
0.c6
0.055
0.05
0.045

180
160
140
120
1C0
80
60
40
20

0 1.25 1.275

ALY LA LA LALAN RALL AR LA LAY R

200
175
150
125
100
75
50
25

LA LARAN RARAY RAARN EARRI RARRN ALY RARAI N

| [ NS

1.25 1275 1.3 1.325

IBRARIEEREREEEERSREEEERRERERERE Y
IR L R R R

"[fj
W

| I L,

SN

/

1.3 1.325

0o

0 11 L L) 11 1
0.05 0.06 0.07 0.08

6,
Summarize pdf of parameter of

interest with, e.g., mean, median,
standard deviation, etc.

Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

G. Cowan
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Bayesian method with alternative priors

Suppose we don’t have a previous measurement of 8, but rather,
€.g., a theorist says it should be positive and not too much greater
than 0.1 "or so", 1.e., something like

1

71'1(91):;6_01/7_, 60 >0, 7=0.1.

From this we obtain (numerically) the posterior pdf for 6,:

40

P(6,ly)

32

24 -

16

G. Cowan

—1=0.1
----- t=0.01
-—1=0.001

This summarizes all
knowledge about 6.

_— Loc?k also at %‘esult from
variety of priors.

0 1 coe” 1 1
12 1.25 13 1.35

14

145
6,
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Expected discovery significance for counting

experiment with background uncertainty
I. Discovery sensitivity for counting experiment with 5 known:

S

(a) 7

(b) Profile likelihood 2( N <1 f) B )
ratio test & Asimov: (s+6)In{1+ b s

II. Discovery sensitivity with uncertainty in b, oy:
S

(a) \/b+ of

(b) Profile likelihood ratio test & Asimov:

1/2
(s +b)(b+ of) b? ots
[2((s+b)ln B+ (s 1 b)o? Ugln 1+b(b—|—a§)
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Counting experiment with known background

Count a number of events n ~ Poisson(s+b), where
s = expected number of events from signal,

b = expected number of background events.

To test for discovery of signal compute p-value of s = 0 hypothesis,

oo bn
p=P(n2noslb) = Y —e " =1-Fa(2b;2ncbs)

N=MNghs

Usually convert to equivalent significance: Z = & 1(1 — p)
where @ 1s the standard Gaussian cumulative distribution, e.g.,
Z>5 (a5 sigma effect) means p <2.9 X 10,

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/Nb for expected discovery significance

For large s + b, n — x ~ Gaussian(u,0) , 4 =s + b, 0 = (s + b).

For observed value x, p-value of s =0 1s Prob(x > x| s = 0),:

Io)s_b
=t ()

Significance for rejecting s = 0 1s therefore

Tobs — b
Vb

Expected (median) significance assuming signal rate s 1s

Zo = (I)_l(l —])0) =

median|[Zy|s + b]

S
Vb
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Better approximation for significance

Poisson likelihood for parameter s 1s

L(s) = BT o For now
" no nuisance
To test for discovery use profile likelihood ratio: patams.
—21In A(0) §>0, A
qO = A(S) _ L(S,AH(AS))
0 §<0. L(3,0)

So the likelthood ratio statistic for testing s = 0 1s

L(0)
L(3)

qgo = —21In = 2 (n ln% + b — n) for n > b, 0 otherwise
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem),

b

Zz\/2<nlnﬁ+b—n> for n > band Z = 0 otherwise.

To find median[Z]|s], let n — s + b (1.e., the Asimov data set):

Za =\/2 ((s+b)ln(1+%> —s)

This reduces to s/\b for s << b.

G. Cowan UGR 2020 / Statistics Lecture 4
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n ~ Poisson(s+b), median significance,
assuming s, of the hypothesis s =0

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
8

0

“Exact” values from MC,
jumps due to discrete data.

med[Z |1]
m.

Asimov \/qo, A g0od approx.
for broad range of s, b.

s/\b only good for s « b.
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Extending s/Vb to case where b uncertain

The intuitive explanation of s/\b is that it compares the signal,
s, to the standard deviation of n assuming no signal, Vb.

Now suppose the value of b 1s uncertain, characterized by a
standard deviation oy,

A reasonable guess is to replace Vb by the quadratic sum of
Vb and o, i.c.,

s
\/b+ of

This has been used to optimize some analyses e.g. where
o, cannot be neglected.

med[Z|s] =

G. Cowan UGR 2020 / Statistics Lecture 4
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Profile likelihood with b uncertain
This 1s the well studied “on/off” problem: Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; L1 and Ma 1983....
Measure two Poisson distributed values:

n ~ Poisson(s+b) (primary or “search” measurement)

m ~ Poisson(zb) (control measurement, T known)

The likelihood function i1s

-~ ¢
n! m!

L(S, b) — (S + b) e—(s-}-b) (Tb) —7b

Use this to construct profile likelihood ratio (6 1s nuisance

parmeter): L(0 ?)(O))

L(&,b)

A(0) =
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Ingredients for profile likelithood ratio

To construct profile likelihood ratio from this need estimators:

§ = n-m/r,
b = m/r
1‘;(8) _ ”+m—(1+7)3+\/(n+m—(1+T)s)2+4(1+7)3m.

2(1+171)
and 1n particular to test for discovery (s = 0),

n-+m
1+7

G. Cowan UGR 2020 / Statistics Lecture 4
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Asymptotic significance

Use profile likelihood ratio for ¢g,, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Z = /B

- [~z (om [ ] o )

for n > b and Z = 0 otherwise.

Essentially same as 1n:

Robert D. Cousins, James T. Linnemann and Jordan Tucker, NIM A 595 (2008) 480
501; arXiv:physics/0702156.

Tipei Li and Yugian Ma, Astrophysical Journal 272 (1983) 317-324.
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Asimov approximation for median significance

To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n—s+b

m — th

A = [—2 ((S +b)In [(iiil)(-::_)z)] +7bln [1 + a -If'r)b])rﬂ

. - - b .
Or use the variance of b=m/tr, V[b] =o0f = — , to eliminate t:
T

2
o

5
O

(s +b)(b+ of)
b2 + (s + b)o?

o2s

b(b+ of)

1+

I

A = [2 ((s-l—b)ln
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Limiting cases

Expanding the Asimov formula in powers of s/b and
0,2/b (= 1/7) gives

S

\/b—l-ag

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated
with the Asimov data set.

Za =

(1 + O(s/b) + O(a? /b))
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Testing the formulae: s =15

7 9

N, 5 s=95

O

& c,/b=0.2,0.5
6+
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Using sensitivity to optimize a cut

(a) 720 S _ (b)
% — Z, Z : — signal
-—— background
£ e sl\’b+c§ 15
...... s=157 s=80
b=16 b=0.20
10F 1 |
\ > >
0.5
%20 20 80 80 100 % 20 20 60 80 100
Xeut X

Figure 1: (a) The expected significance as a function of the cut value zcy; (b) the distributions of
signal and background with the optimal cut value indicated.
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Summary on discovery sensitivity

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:

. . 1/2
B (s +b)(b+ of) b? ots
ZA = [2 ((s—l—b)ln BT (s 1 b)o? g In 1+b(b+0§)

For large b, all formulae OK.
For small b, s/\b and s/\(b+0,2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK 1f model 1s not simple on/off experiment,
e.g., several background control measurements (checking this).
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Finally

Four lectures only enough for a brief introduction to:
Statistical tests for discovery and limits
Multivariate methods
Bayesian parameter estimation, MCMC
Experimental sensitivity

No time for many important topics
Bayesian approach to discovery (Bayes factors)
The look-elsewhere effect, etc., etc.

Final thought: once the basic formalism is understood, most of the
work focuses on writing down the likelihood, e.g., P(x|#), and
including 1n 1t enough parameters to adequately describe the data
(true for both Bayesian and frequentist approaches).
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Extra slides
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Why 5 sigma?

Common practice in HEP has been to claim a discovery if the
p-value of the no-signal hypothesis is below 2.9 X 107,

corresponding to a significance Z= @' (1 —p) =5 (a 5o effect).

There a number of reasons why one may want to require such
a high threshold for discovery:

The “cost” of announcing a false discovery is high.
Unsure about systematics.
Unsure about look-elsewhere effect.

The implied signal may be a priori highly improbable
(e.g., violation of Lorentz invariance).
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Why 5 sigma (cont.)?

But the primary role of the p-value is to quantify the probability
that the background-only model gives a statistical fluctuation
as big as the one seen or bigger.

It 1s not intended as a means to protect against hidden systematics

or the high standard required for a claim of an important discovery.

In the processes of establishing a discovery there comes a point
where it 1s clear that the observation 1s not simply a fluctuation,
but an “effect”, and the focus shifts to whether this 1s new physics
or a systematic.

Providing LEE 1s dealt with, that threshold 1s probably closer to
3o than So.
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Choice of test for limits (2)

In some cases u = 0 1s no longer a relevant alternative and we
want to try to exclude ¢ on the grounds that some other measure of
incompatibility between it and the data exceeds some threshold.

If the measure of incompatibility 1s taken to be the likelihood ratio
with respect to a two-sided alternative, then the critical region can
contain both high and low data values.

— unified intervals, G. Feldman, R. Cousins,
Phys. Rev. D 57, 3873—-3889 (1998)

The Big Debate 1s whether to use one-sided or unified intervals

in cases where small (or zero) values of the parameter are relevant
alternatives. Professional statisticians have voiced support

on both sides of the debate.
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Unified (Feldman-Cousins) intervals

We can use directly

Q»

L (IU
L(j.

)
)

t,=—2InA(u) where  A\(p) =

>

as a test statistic for a hypothesized u.

Large discrepancy between data and hypothesis can correspond
either to the estimate for u being observed high or low relative

to u.

This 1s essentially the statistic used for Feldman-Cousins intervals

(here also treats nuisance parameters).
G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at u = 0, depending on data.
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Distribution of t,

Using Wald approximation, f(¢,/u’) 1s noncentral chi-square
for one degree of freedom:

1= e (45552 on (252

Special case of u = u ' 1s chi-square for one d.o.f. (Wilks).

The p-value for an observed value of 7, 1s

pp=1—=F(tulp) =2(1 -2 (V1))

and the corresponding significance is

Z, =0 1—-p,) =012 (/1) — 1)
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Upper/lower edges of F-C interval for u versus b

20

Upper end of conf. int. for u

i

.
-
-

h

for n ~ Poisson(u+b)

Feldman & Cousins, PRD 57 (1998) 3873
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Lower edge may be at zero, depending on data.

For n =0, upper edge has (weak) dependence on b.
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Feldman-Cousins discussion

The 1nitial motivation for Feldman-Cousins (unified) confidence
intervals was to eliminate null intervals.

The F-C limits are based on a likelihood ratio for a test of u
with respect to the alternative consisting of all other allowed values
of 1 (not just, say, lower values).

The interval’s upper edge 1s higher than the limit from the one-
sided test, and lower values of 4 may be excluded as well. A
substantial downward fluctuation 1n the data gives a low (but
nonzero) limit.

This means that when a value of u 1s excluded, it 1s because
there 1s a probability a for the data to fluctuate either high or low
in a manner corresponding to less compatibility as measured by
the likelithood ratio.
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