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Outline
Lecture 1:  Introduction and review of fundamentals

Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Introduction to statistical tests

Lecture 2:  More on statistical tests
Multivariate methods
Neural networks

Lecture 3:  Framework for full analysis
p-values, discovery, limits
Tests from likelihood ratio

Lecture 4:  Further topics
Nuisance parameters and systematic uncertainties 
More parameter estimation, Bayesian methods
(Experimental sensitivity)
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Systematic uncertainties and nuisance parameters
In general our model of the data is not perfect:

x

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter ↔ systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi ~ Gauss(μ(xi ), σi )

assume xi and σi known.

Goal:  estimate θ0
Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1)
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The Bayesian approach
In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

Our experiment has data x, → likelihood function L(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf p(θ | x) contains all our knowledge about θ.
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Bayesian method
We need to associate prior probabilities with θ0 and θ1, e.g.,

Putting this into Bayes’ theorem gives:

posterior    ∝ likelihood         ✕ prior

← based on previous 
measurement

‘non-informative’, in any
case much broader than
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Bayesian method (continued)

Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x):

In this example we can do the integral (rare).  We find



G. Cowan UGR 2020 / Statistics Lecture 4 12

Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 
generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than if points were independent.

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  
if not, only take the step with probability 
If proposed step rejected, hop in place.
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
e.g., a theorist says it should be positive and not too much  greater
than 0.1 "or so", i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.



G. Cowan UGR 2020 / Statistics Lecture 4 17

I.  Discovery sensitivity for counting experiment with b known:

(a)

(b)  Profile likelihood 
ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

(a)

(b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background
Count a number of events n ~ Poisson(s+b), where

s = expected number of events from signal,

b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance
For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance
Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s « b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain
The intuitive explanation of s/√b is that it compares the signal,
s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where 
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b)         (primary or “search” measurement)

m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parmeter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance
Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance
To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n → s + b
m → τb

,   to eliminate τ:ˆ
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Limiting cases
Expanding the Asimov formula in powers of s/b and
σb2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5
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Using sensitivity to optimize a cut
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Summary on discovery sensitivity

For large b, all formulae OK.

For small b, s/√b and s/√(b+σb2) overestimate the significance.

Could be important in optimization of searches with
low background.

Formula maybe also OK if model is not simple on/off experiment, 
e.g., several background control measurements (checking this).

Simple formula for expected discovery significance based on
profile likelihood ratio test and Asimov approximation:
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Finally
Four lectures only enough for a brief introduction to:

Statistical tests for discovery and limits
Multivariate methods
Bayesian parameter estimation, MCMC
Experimental sensitivity

No time for many important topics
Bayesian approach to discovery (Bayes factors)
The look-elsewhere effect, etc., etc.

Final thought:  once the basic formalism is understood, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the data 
(true for both Bayesian and frequentist approaches).



G. Cowan UGR 2020 / Statistics Lecture 4 33

Extra slides



Common practice in HEP has been to claim a discovery if the 
p-value of the no-signal hypothesis is below 2.9 × 10-7, 
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect).

There a number of reasons why one may want to require such
a high threshold for discovery:

The “cost” of announcing a false discovery is high.

Unsure about systematics.

Unsure about look-elsewhere effect.

The implied signal may be a priori highly improbable
(e.g., violation of Lorentz invariance).
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Why 5 sigma?
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But the primary role of the p-value is to quantify the probability
that the background-only model gives a statistical fluctuation
as big as the one seen or bigger.

It is not intended as a means to protect against hidden systematics
or the high standard required for a claim of an important discovery.

In the processes of establishing a discovery there comes a point
where it is clear that the observation is not simply a fluctuation,
but an “effect”, and the focus shifts to whether this is new physics
or a systematic.

Providing LEE is dealt with, that threshold is probably closer to
3σ than 5σ.
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Why 5 sigma (cont.)?
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Choice of test for limits (2)
In some cases μ = 0 is no longer a relevant alternative and we 
want to try to exclude μ on the grounds that some other measure of 
incompatibility between it and the data exceeds some threshold.

If the measure of incompatibility is taken to be the likelihood ratio
with respect to a two-sided alternative, then the critical region can 
contain both high and  low data values.  

→ unified intervals, G. Feldman, R. Cousins, 
Phys. Rev. D 57, 3873–3889 (1998)

The Big Debate is whether to use one-sided or unified intervals
in cases where small (or zero) values of the parameter are relevant
alternatives.  Professional statisticians have voiced support
on both sides of the debate. 
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Unified (Feldman-Cousins) intervals
We can use directly

G. Cowan UGR 2020 / Statistics Lecture 4

as a test statistic for a hypothesized μ.

where

Large discrepancy between data and hypothesis can correspond
either to the estimate for μ being observed high or low relative
to μ.

This is essentially the statistic used for Feldman-Cousins intervals
(here also treats nuisance parameters).

G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at μ = 0, depending on data.
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Distribution of tμ
Using Wald approximation, f (tμ|μ′) is noncentral chi-square
for one degree of freedom: 
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Special case of μ = μ ′ is chi-square for one d.o.f. (Wilks).

The p-value for an observed value of tμ is

and the corresponding significance is
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Upper/lower edges of F-C interval for μ versus b
for n ~ Poisson(μ+b)

Lower edge may be at zero, depending on data.

For n = 0, upper edge has (weak) dependence on b.

Feldman & Cousins, PRD 57 (1998) 3873

G. Cowan 
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Feldman-Cousins discussion
The initial motivation for Feldman-Cousins (unified) confidence
intervals was to eliminate null intervals.

The F-C limits are based on a likelihood ratio for a test of μ
with respect to the alternative consisting of all other allowed values
of μ (not just, say, lower values).

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of μ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit.

This means that when a value of μ is excluded, it is because
there is a probability α for the data to fluctuate either high or low
in a manner corresponding to less compatibility as measured by
the likelihood ratio.


