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Abstract

In experimental particle physics as well as in many other fields it has be-
come increasingly important to analyze data in a manner that extracts the
maximum information and takes into account all of the known uncertainties.
This article reviews the most important statistical methods used to carry
out this task. It begins with an overview of probability, as this forms the
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basis for quantifying uncertainty. The statistical methods considered include
the general framework of statistical tests and parameter estimation, including
methods for constructing intervals such as upper limits. Both frequentist and
Bayesian approaches are described.1

1 Introduction

This article presents an overview of statistical methods used in high-energy
physics (HEP). In statistics, we are interested in using a sample of data to
make inferences about a probabilistic model, e.g., to assess the model’s validity
or to determine the values of its parameters. There are two main approaches to
statistical inference, which we may call frequentist and Bayesian. These differ
in their interpretation of probability. A review of probability and random
variables is given in Sections 2 and 3.

The most important statistical tools within the frequentist framework are
parameter estimation, covered in Section 4, and statistical tests, discussed
in Section 5. Frequentist confidence intervals, which are constructed so as to
cover the true value of a parameter with a specified probability, are treated
in Section 6.2. Bayesian methods for interval estimation are discussed in Sec-
tions 6.1. These intervals quantify the degree of belief with which a parameter
lies within a stated range. Intervals are discussed for the important cases of
Gaussian, binomial and Poisson distributed data.

2 Probability

An abstract definition of probability can be given by considering a set S, called
the sample space, and possible subsets A, B, . . . , the interpretation of which
is left open for now. The probability P is a real-valued function defined by
the following axioms due to Kolmogorov (Kolmogorov 1933):

1. For every subset A in S, P (A) ≥ 0;
2. For disjoint subsets (i.e., A ∩ B = ∅), P (A ∪ B) = P (A) + P (B);
3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read P of A given
B) as

P (A|B) =
P (A ∩ B)

P (B)
. (1)

From this definition and using the fact that A ∩ B and B ∩ A are the same,
one obtains Bayes’ theorem,

1 This article is based largely on the reviews of Probability and Statistics contained
in the Review of Particle Physics by the Particle Data Group (Amsler et al. 2008).
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P (A|B) =
P (B|A)P (A)

P (B)
. (2)

From the three axioms of probability and the definition of conditional proba-
bility, one obtains the law of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (3)

for any subset B and for disjoint Ai with ∪iAi = S. This can be combined
with Bayes’ theorem Eq. (2) to give

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

, (4)

where the subset A could, for example, be one of the Ai.
In the most commonly used interpretation of probability used in particle

physics, the elements of the sample space correspond to outcomes of a re-
peatable experiment. The probability P (A) is assigned a value equal to the
limiting frequency of occurrence of A. This interpretation forms the basis of
frequentist statistics.

The elements of the sample space can also be interpreted as hypotheses,
i.e., statements that are either true or false, such as ‘The mass of the W
boson lies between 80.3 and 80.5 GeV’. In the frequency interpretation, such
statements are either always or never true, i.e., the corresponding probabilities
would be 0 or 1. Using subjective probability, however, P (A) is interpreted as
the degree of belief that the hypothesis A is true. Subjective probability is
used in Bayesian (as opposed to frequentist) statistics. Bayes’ theorem can be
written

P (theory|data) ∝ P (data|theory)P (theory) , (5)

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of the ex-
periment. Here P (theory) is the prior probability for the theory, which reflects
the experimenter’s degree of belief before carrying out the measurement, and
P (data|theory) is the probability to have gotten the data actually obtained,
given the theory, which is also called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior
probability; this is necessarily subjective and may depend on previous mea-
surements, theoretical prejudices, etc. Once this has been specified, however,
Eq. (5) tells how the probability for the theory must be modified in the light
of the new data to give the posterior probability, P (theory|data). As Eq. (5)
is stated as a proportionality, the probability must be normalized by summing
(or integrating) over all possible hypotheses.
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3 Random variables

A random variable is a numerical characteristic assigned to an element of the
sample space. In the frequency interpretation of probability, it corresponds
to an outcome of a repeatable experiment. Let x be a possible outcome of
an observation. If x can take on any value from a continuous range, we write
f(x; θ)dx as the probability that the measurement’s outcome lies between x
and x + dx. The function f(x; θ) is called the probability density function
(p.d.f.), which may depend on one or more parameters θ. If x can take on
only discrete values (e.g., the non-negative integers), then f(x; θ) is itself a
probability. The p.d.f. is always normalized to unit area (unit sum, if discrete).
Both x and θ may have multiple components and are then often written as
vectors.

The cumulative distribution function F (x) is the probability for the ran-
dom variable to be observed less than or equal to x:

F (x) =

∫ x

−∞

f(x′) dx′ . (6)

Here and below, if x is discrete-valued, the integral is replaced by a sum. The
endpoint x is expressly included in the integral or sum.

Any function of random variables is itself a random variable, with (in
general) a different p.d.f. The expectation value or mean of any function u(x)
is

E[u(x)] =

∫
∞

−∞

u(x) f(x) dx , (7)

assuming the integral is finite. If u(x) and v(x), are any two functions of x,
then E[u+v] = E[u]+E[v]. For constant values c and k one finds E[cu+k] =
cE[u] + k.

The nth moment of a random variable is

αn ≡ E[xn] =

∫
∞

−∞

xnf(x) dx , (8)

and the nth central moment of x (or moment about the mean, α1) is

mn ≡ E[(x − α1)
n] =

∫
∞

−∞

(x − α1)
nf(x) dx . (9)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 , (10)

σ2 ≡ V [x] ≡ m2 = α2 − µ2 . (11)



Statistics 5

The mean is the location of the “centre of mass” of the p.d.f., and the variance
is a measure of the square of its width. Note that V [cx + k] = c2V [x]. It is
often convenient to use the standard deviation of x, σ, defined as the square
root of the variance.

Besides the mean, another useful indicator of the “middle” of the proba-
bility distribution is the median, xmed, defined by F (xmed) = 1/2, i.e., half
the probability lies above and half lies below xmed. (More rigorously, xmed is
a median if P (x ≥ xmed) ≥ 1/2 and P (x ≤ xmed) ≥ 1/2. If only one value
exists, it is called ‘the median.’)

Let x and y be two random variables with a joint p.d.f. f(x, y). The
marginal p.d.f. of x (the distribution of x with y unobserved) is

f1(x) =

∫
∞

−∞

f(x, y) dy , (12)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y given
fixed x (with f1(x) 6= 0) is defined by f3(y|x) = f(x, y)/f1(x), and similarly
f4(x|y) = f(x, y)/f2(y). From these, we immediately obtain Bayes’ theorem
(see Eqs. (2) and (4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)∫
f3(y|x′)f1(x′) dx′

. (13)

The mean of x is

µx =

∫
∞

−∞

∫
∞

−∞

x f(x, y) dx dy =

∫
∞

−∞

x f1(x) dx , (14)

and similarly for y. The covariance of x and y is

cov[x, y] = E[(x − µx)(y − µy)] = E[xy] − µxµy . (15)

A dimensionless measure of the covariance of x and y is given by the correlation
coefficient,

ρxy = cov[x, y]/σxσy , (16)

where σx and σy are the standard deviations of x and y. It can be shown that
−1 ≤ ρxy ≤ 1.

Two random variables x and y are independent if and only if

f(x, y) = f1(x)f2(y) . (17)

If x and y are independent, then ρxy = 0; the converse is not necessarily true.
If x and y are independent, then for any functions u(x) and v(y) one has
E[u(x)v(y)] = E[u(x)]E[v(y)], and also one finds V [x + y] = V [x] + V [y]. If
x and y are not independent, V [x + y] = V [x] + V [y] + 2cov[x, y], and E[uv]
does not necessarily factorize.
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Consider a set of n continuous random variables x = (x1, . . . , xn) with
joint p.d.f. f(x), and a set of n new variables y = (y1, . . . , yn), related to x

by means of a function y(x) that is one-to-one, i.e., the inverse x(y) exists.
The joint p.d.f. for y is given by

g(y) = f(x(y))|J | , (18)

where |J | is the absolute value of the determinant of the square matrix Jij =
∂xi/∂yj (the Jacobian determinant). If the transformation from x to y is not
one-to-one, the x-space must be broken in to regions where the function y(x)
can be inverted, and the contributions to g(y) from each region summed.

Several probability functions and p.d.f.s along with their properites are
given in Table 1.

4 Parameter estimation

Here we review point estimation of parameters, first with an overview of the
frequentist approach and its two most important methods, maximum likeli-
hood and least squares, treated in Sections 4.2 and 4.3. The Bayesian approach
is outlined in Sec. 4.4.

An estimator θ̂ (written with a hat) is a function of the data whose value,
the estimate, is intended as a meaningful guess for the value of the parameter θ.
There is no fundamental rule dictating how an estimator must be constructed.
One tries, therefore, to choose that estimator which has the best properties.
The most important of these are (a) consistency, (b) bias, (c) efficiency, and
(d) robustness.

(a) An estimator is said to be consistent if the estimate θ̂ converges to the
true value θ as the amount of data increases. This property is so important
that it is possessed by all commonly used estimators.
(b) The bias, b = E[ θ̂ ]− θ, is the difference between the expectation value of
the estimator and the true value of the parameter. The expectation value is
taken over a hypothetical set of similar experiments in which θ̂ is constructed
in the same way. When b = 0, the estimator is said to be unbiased. The bias
depends on the chosen metric, i.e., if θ̂ is an unbiased estimator of θ, then θ̂ 2

is not in general an unbiased estimator for θ2.
(c) Efficiency is the inverse of the ratio of the variance V [ θ̂ ] to the minimum
possible variance for any estimator of θ. Under rather general conditions, the
minimum variance for a single parameter θ is given by the Rao-Cramér-Frechet
bound,

σ2
min = −

(
1 +

∂b

∂θ

)2 /
E

[
∂2 lnL(θ)

∂θ2

]
, (19)

where is L(θ) is the likelihood function (see below). The mean-squared error,
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Table 1. Probability distributions, their mean values and variances.

Distribution Mean Variance

Binomial f(r; N, p) = N!
r!(N−r)!

pr(1 − p)N−r Np Np(1 − p)

Poisson f(n; ν) = νne−ν

n!
ν ν

Uniform f(x; a, b) =

{
1/(b − a) a ≤ x ≤ b,

0 otherwise.

a+b
2

(b−a)2

12

Gaussian f(x; µ, σ2) = 1√
2π σ

exp
[
− (x−µ)2

2σ2

]
µ σ2

Multivariate
Gaussian

f(x; µ, V ) = 1

(2π)n/2
√

|V |
µ Vij

× exp
[
− 1

2
(x− µ)T V −1(x − µ)

]

Exponential f(x; µ) = 1
µ
e−x/µ µ µ2

Chi-square f(z; n) = zn/2−1e−z/2

2n/2Γ (n/2)
n 2n

Student’s t f(t; n) = 1√
nπ

Γ [(n+1)/2]
Γ (n/2)

0
(n > 1)

n/(n − 2)

(n > 2)

×
(
1 + t2

n

)−(n+1)/2

Gamma f(x; λ, k) = xk−1λke−λx

Γ (k)
k/λ k/λ2

Beta f(x;α, β) = Γ (α+β)
Γ (α)Γ (β)

xα−1(1 − x)β−1 α
α+β

αβ
(α+β)2(α+β+1)

MSE = E[(θ̂ − θ)2] = V [θ̂] + b2 , (20)

is a measure of an estimator’s quality which combines the uncertainties due
to bias and variance.
(d) Robustness is the property of being insensitive to departures from assump-
tions in the p.d.f., e.g., owing to uncertainties in the distribution’s tails.

Simultaneously optimizing for all the measures of estimator quality de-
scribed above can lead to conflicting requirements. For example, there is in
general a trade-off between bias and variance. For some common estimators,
the properties above are known exactly. More generally, it is possible to eval-
uate them by Monte Carlo simulation. Note that they will often depend on
the unknown θ.
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4.1 Estimators for mean, variance and median

Suppose we have a set of N independent measurements, xi, assumed to be
unbiased measurements of the same unknown quantity µ with a common, but
unknown, variance σ2. Then

µ̂ =
1

N

N∑

i=1

xi (21)

σ̂2 =
1

N − 1

N∑

i=1

(xi − µ̂)2 (22)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/N and the

variance of σ̂2 is

V
[
σ̂2

]
=

1

N

(
m4 − N − 3

N − 1
σ4

)
, (23)

where m4 is the 4th central moment of x. For Gaussian distributed xi, this
becomes 2σ4/(N − 1) for any N ≥ 2, and for large N , the standard deviation
of σ̂ (the “error of the error”) is σ/

√
2N . Again, if the xi are Gaussian, µ̂ is an

efficient estimator for µ, and the estimators µ̂ and σ̂2 are uncorrelated. Other-
wise the arithmetic mean (21) is not necessarily the most efficient estimator;
this is discussed further in Sec. 8.7 of Ref. (James 2007).

4.2 The method of maximum likelihood

Suppose we have a set of N measured quantities x = (x1, . . . , xN ) described by
a joint p.d.f. f(x; θ), where θ = (θ1, . . . , θn) is set of n parameters whose values
are unknown. The likelihood function is given by the p.d.f. evaluated with the
data x, but viewed as a function of the parameters, i.e., L(θ) = f(x; θ). If
the measurements xi are statistically independent and each follow the p.d.f.
f(x; θ), then the joint p.d.f. for x factorizes and the likelihood function is

L(θ) =
N∏

i=1

f(xi; θ) . (24)

The method of maximum likelihood takes the estimators θ̂ to be those values
of θ that maximize L(θ).

Note that the likelihood function is not a p.d.f. for the parameters θ; in
frequentist statistics this is not defined. In Bayesian statistics, one can obtain
from the likelihood the posterior p.d.f. for θ, but this requires multiplying by
a prior p.d.f. (see Sec. 6.1).
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It is usually easier to work with lnL, and since both are maximized for
the same parameter values θ, the maximum likelihood (ML) estimators can
be found by solving the likelihood equations,

∂ lnL

∂θi
= 0 , i = 1, . . . , n . (25)

Often the solution must be found numerically. Maximum likelihood estimators
are important because they are approximately unbiased and efficient for large
data samples, under quite general conditions, and the method has a wide
range of applicability.

In evaluating the likelihood function, it is important that any normaliza-
tion factors in the p.d.f. that involve θ be included. However, we will only be
interested in the maximum of L and in ratios of L at different values of the
parameters; hence any multiplicative factors that do not involve the parame-
ters that we want to estimate may be dropped, including factors that depend
on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the ML estimators
θ̂ transform to η(θ̂). That is, the ML solution is invariant under change of
parameter. However, other properties of ML estimators, in particular the bias,
are not invariant under change of parameter.

Under requirements usually satisfied in practical analyses and for a suf-
ficiently large data sample, the inverse V −1 of the covariance matrix Vij =

cov[θ̂i, θ̂j] for a set of ML estimators can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (26)

In the large sample limit (or in a linear model with Gaussian errors), L has a
Gaussian form and lnL is (hyper)parabolic. In this case, it can be seen that a
numerically equivalent way of determining s-standard-deviation errors is from
the contour given by the θ′ such that

lnL(θ′) = lnLmax − s2/2 , (27)

where ln Lmax is the value of lnL at the solution point (compare with
Eq. (65)). The extreme limits of this contour on the θi axis give an approxi-
mate s-standard-deviation confidence interval for θi (see Section 6.2).

In the case where the size n of the data sample x1, . . . , xn is small, the
unbinned maximum likelihood method, i.e., use of equation (24), is preferred
since binning can only result in a loss of information, and hence larger statis-
tical errors for the parameter estimates. The sample size n can be regarded as
fixed, or the user can choose to treat it as a Poisson-distributed variable; this
latter option is sometimes called “extended maximum likelihood” (see, e.g.,
(Lyons 1986; Barlow 1990; Cowan 1998)).

If the sample is large, it can be convenient to bin the values in a histogram,
so that one obtains a vector of data n = (n1, . . . , nN ) with expectation values
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ν = E[n] and probabilities f(n; ν). Then one may maximize the likelihood
function based on the contents of the bins (so i labels bins). This is equivalent
to maximizing the likelihood ratio λ(θ) = f(n; ν(θ))/f(n;n), or to minimiz-
ing the equivalent quantity −2 lnλ(θ). For independent Poisson distributed
ni this is (Cousins and Baker 1984)

−2 lnλ(θ) = 2

N∑

i=1

[
νi(θ) − ni + ni ln

ni

νi(θ)

]
, (28)

where for bins with ni = 0, the last term in (28) is zero. The expression (28)
without the terms νi − ni also gives −2 lnλ(θ) for multinomially distributed
ni, i.e., when the total number of entries is regarded as fixed. In the limit
of zero bin width, maximizing (28) is equivalent to maximizing the unbinned
likelihood function (24).

A benefit of binning is that it allows for a goodness-of-fit test (see Sec. 5.2).
According to Wilks’ theorem, for sufficiently large νi and providing certain
regularity conditions are met, the minimum of −2 lnλ as defined by (28)
follows a chi-square distribution (see, e.g., Ref. (Stuart et al. 1991)). If there
are N bins and m fitted parameters, then the number of degrees of freedom
for the chi-square distribution is N − m if the data are treated as Poisson-
distributed, and N − m − 1 if the ni are multinomially distributed.

Suppose the ni are Poisson-distributed and the overall normalization
νtot =

∑
i νi is taken as an adjustable parameter, so that νi = νtotpi(θ),

where the probability to be in the ith bin, pi(θ), does not depend on νtot.
Then by minimizing (28), one obtains that the area under the fitted function
is equal to the sum of the histogram contents, i.e.,

∑
i νi =

∑
i ni. This is not

the case for parameter estimation methods based on a least-squares procedure
with traditional weights (see, e.g., Ref. (Cowan 1998)).

4.3 The method of least squares

The method of least squares (LS) coincides with the method of maximum
likelihood in the following special case. Consider a set of N independent mea-
surements yi at known points xi. The measurement yi is assumed to be Gaus-
sian distributed with mean µ(xi; θ) and known variance σ2

i . The goal is to
construct estimators for the unknown parameters θ. The likelihood function
contains the sum of squares

χ2(θ) = −2 lnL(θ) + constant =

N∑

i=1

(yi − µ(xi; θ))2

σ2
i

. (29)

The set of parameters θ which maximize L is the same as those which minimize
χ2.

The minimum of Equation (29) defines the least-squares estimators θ̂ for
the more general case where the yi are not Gaussian distributed as long as
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they are independent. If they are not independent but rather have a covari-
ance matrix Vij = cov[yi, yj], then the LS estimators are determined by the
minimum of

χ2(θ) = (y − µ(θ))T V −1(y − µ(θ)) , (30)

where y = (y1, . . . , yN ) is the vector of measurements, µ(θ) is the correspond-
ing vector of predicted values (understood as a column vector in (30)), and
the superscript T denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation
where µ(xi; θ) is a linear function of the parameters, i.e.,

µ(xi; θ) =

m∑

j=1

θjhj(xi) . (31)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1,
or Legendre polynomials. We require m < N and at least m of the xi must
be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system
of m linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its
derivatives with respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (32)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (33)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1

2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=

N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (34)

The LS estimators can also be found from the expression

θ̂ = Ug , (35)

where the vector g is defined by

gi =

N∑

j,k=1

yjhi(xk)(V −1)jk . (36)

For the case of uncorrelated yi, for example, one can use (35) with
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(U−1)ij =

N∑

k=1

hi(xk)hj(xk)

σ2
k

, (37)

gi =
N∑

k=1

ykhi(xk)

σ2
k

. (38)

Expanding χ2(θ) about θ̂, one finds that the contour in parameter space
defined by

χ2(θ) = χ2(θ̂) + 1 = χ2
min + 1 (39)

has tangent planes located at approximately plus-or-minus-one standard de-
viation σ

θ̂
from the LS estimates θ̂.

In constructing the quantity χ2(θ), one requires the variances or, in the
case of correlated measurements, the covariance matrix. Often these quantities
are not known a priori and must be estimated from the data; an important
example is where the measured value yi represents a counted number of events
in the bin of a histogram. If, for example, yi represents a Poisson variable,
for which the variance is equal to the mean, then one can either estimate
the variance from the predicted value, µ(xi; θ), or from the observed number
itself, yi. In the first option, the variances become functions of the fitted
parameters, which may lead to calculational difficulties. The second option
can be undefined if yi is zero, and in both cases for small yi, the variance will
be poorly estimated. In either case, one should constrain the normalization
of the fitted curve to the correct value, i.e., one should determine the area
under the fitted curve directly from the number of entries in the histogram
(see (Cowan 1998), Section 7.4). A further alternative is to use the method of
maximum likelihood; for binned data this can be done by minimizing Eq. (28)

As the minimum value of the χ2 represents the level of agreement between
the measurements and the fitted function, it can be used for assessing the
goodness-of-fit; this is discussed further in Section 5.2.

4.4 The Bayesian approach

In the frequentist methods discussed above, probability is associated only
with data, not with the value of a parameter. This is no longer the case in
Bayesian statistics, however, which we introduce in this section. Bayesian
methods are considered further in Sec. 6.1 for interval estimation and in
Sec. 5.3 for model selection. For general introductions to Bayesian statistics
see, e.g., Refs. (O’Hagan and Forster 2004; Sivia and Skilling 2006; Gregory
2005; Bernardo and Smith 2000).

Suppose the outcome of an experiment is characterized by a vector of
data x, whose probability distribution depends on an unknown parameter (or
parameters) θ that we wish to determine. In Bayesian statistics, all knowledge
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about θ is summarized by the posterior p.d.f. p(θ|x), which gives the degree
of belief for θ to take on values in a certain region given the data x. It is
obtained by using Bayes’ theorem,

p(θ|x) =
L(x|θ)π(θ)∫

L(x|θ′)π(θ′) dθ′
, (40)

where L(x|θ) is the likelihood function, i.e., the joint p.d.f. for the data viewed
as a function of θ, evaluated with the data actually obtained in the experiment,
and π(θ) is the prior p.d.f. for θ. Note that the denominator in (40) serves to
normalize the posterior p.d.f. to unity.

As it can be difficult to report the full posterior p.d.f. p(θ|x), one would
usually summarize it with statistics such as the mean (or median), and covari-
ance matrix. In addition one may construct intervals with a given probability
content, as is discussed in Sec. 6.1 on Bayesian interval estimation.

Bayesian statistics supplies no unique rule for determining the prior π(θ);
in a subjective Bayesian analysis this reflects the experimenter’s degree of
belief (or state of knowledge) about θ before the measurement was carried
out. For the result to be of value to the broader community, whose members
may not share these beliefs, it is important to carry out a sensitivity analysis,
that is, to show how the result changes under a reasonable variation of the
prior probabilities.

One might like to construct π(θ) to represent complete ignorance about
the parameters by setting it equal to a constant. A problem here is that if
the prior p.d.f. is flat in θ, then it is not flat for a nonlinear function of θ,
and so a different parametrization of the problem would lead in general to a
non-equivalent posterior p.d.f.

For the special case of a constant prior, one can see from Bayes’ theorem
(40) that the posterior is proportional to the likelihood, and therefore the
mode (peak position) of the posterior is equal to the ML estimator. The
posterior mode, however, will change in general upon a transformation of
parameter. A summary statistic other than the mode may be used as the
Bayesian estimator, such as the median, which is invariant under parameter
transformation. But this will not in general coincide with the ML estimator.

The difficult and subjective nature of encoding personal knowledge into
priors has led to what is called objective Bayesian statistics, where prior prob-
abilities are based not on an actual degree of belief but rather derived from
formal rules. These give, for example, priors which are invariant under a trans-
formation of parameters or which result in a maximum gain in information
for a given set of measurements. For an extensive review see, e.g., Ref. (Kass
and Wasserman 1996).

An important procedure for deriving objective priors is due to Jeffreys.
According to Jeffreys’ rule one takes the prior as

π(θ) ∝
√

det(I(θ)) , (41)
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where

Iij(θ) = −E

[
∂2 ln L(x|θ)

∂θi∂θj

]
= −

∫
∂2 lnL(x|θ)

∂θi∂θj
L(x|θ) dx (42)

is the Fisher information matrix. One can show that the Jeffreys prior leads
to inference that is invariant under a transformation of parameters.

Neither the constant nor 1/
√

µ priors can be normalized to unit area and
are said to be improper. This can be allowed because the prior always appears
multiplied by the likelihood function, and if the likelihood falls off sufficiently
quickly then one may have a normalizable posterior density.

Bayesian statistics provides a framework for incorporating systematic un-
certainties into a result. Suppose, for example, that a model depends not only
on parameters of interest θ, but on nuisance parameters ν, whose values are
known with some limited accuracy. For a single nuisance parameter ν, for ex-
ample, one might have a p.d.f. centred about its nominal value with a certain
standard deviation σν . Often a Gaussian p.d.f. provides a reasonable model
for one’s degree of belief about a nuisance parameter; in other cases, more
complicated shapes may be appropriate. If, for example, the parameter rep-
resents a non-negative quantity then a log-normal or gamma p.d.f. can be a
more natural choice than a Gaussian truncated at zero. The likelihood func-
tion, prior, and posterior p.d.f.s then all depend on both θ and ν, and are
related by Bayes’ theorem, as usual. One can obtain the posterior p.d.f. for θ

alone by integrating over the nuisance parameters, i.e.,

p(θ|x) =

∫
p(θ, ν|x) dν . (43)

Such integrals can often not be carried out in closed form, and if the number
of nuisance parameters is large, then they can be difficult to compute with
standard Monte Carlo methods. Markov Chain Monte Carlo (MCMC) is often
used for computing integrals of this type.

5 Statistical tests

In addition to estimating parameters, one often wants to assess the validity of
certain statements concerning the data’s underlying distribution. Frequentist
Hypothesis tests, described in Sec. 5.1, provide a rule for accepting or reject-
ing hypotheses depending on the outcome of a measurement. In significance
tests, covered in Sec. 5.2, one gives the probability to obtain a level of incom-
patibility with a certain hypothesis that is greater than or equal to the level
observed with the actual data. In the Bayesian approach, the corresponding
procedure is referred to as model selection, which is based fundamentally on
the probabilities of competing hypotheses. In Sec. 5.3 we describe a related
construct called the Bayes factor, which can be used to quantify the degree
to which the data prefer one or another hypothesis.
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5.1 Hypothesis tests

Consider an experiment whose outcome is characterized by a vector of data x.
A hypothesis is a statement about the distribution of x. It could, for example,
define completely the p.d.f. for the data (a simple hypothesis), or it could
specify only the functional form of the p.d.f., with the values of one or more
parameters left open (a composite hypothesis).

A statistical test is a rule that states for which values of x a given hypoth-
esis (often called the null hypothesis, H0) should be rejected in favour of its
alternative H1. This is done by defining a region of x-space called the critical
region; if the outcome of the experiment lands in this region, H0 is rejected,
otherwise it is accepted.

Rejecting H0 if it is true is called an error of the first kind. The probability
for this to occur is called the size or significance level of the test, α, which is
chosen to be equal to some pre-specified value. It can also happen that H0

is false and the true hypothesis is the alternative, H1. If H0 is accepted in
such a case, this is called an error of the second kind, which will have some
probability β. The quantity 1 − β is called the power of the test relative to
H1.

In high-energy physics, the components of x might represent the measured
properties of candidate events, and the acceptance region is defined by the
cuts that one imposes in order to select events of a certain desired type. Here
H0 could represent the background hypothesis and the alternative H1 could
represent the sought after signal.

Often rather than using the full set of quantities x, it is convenient to
define a test statistic, t, which can be a single number, or in any case a vector
with fewer components than x. Each hypothesis for the distribution of x

will determine a distribution for t, and the acceptance region in x-space will
correspond to a specific range of values of t.

Often one tries to construct a test to maximize power for a given signifi-
cance level, i.e., to maximize the signal efficiency for a given significance level.
The Neyman–Pearson lemma states that this is done by defining the critical
region for the test of the background hypothesis H0 (i.e., the acceptance re-
gion for signal, H1) such that, for x in that region, the ratio of p.d.f.s for the
hypotheses H1 and H0,

λ(x) =
f(x|H1)

f(x|H0)
, (44)

is greater than a given constant, the value of which is chosen to give the
desired signal efficiency. Here H0 and H1 must be simple hypotheses, i.e.,
they should not contain undetermined parameters. The lemma is equivalent
to the statement that Eq. (44) represents the test statistic with which one
may obtain the highest signal efficiency for a given purity for the selected
sample. It can be difficult in practice, however, to determine λ(x), since this
requires knowledge of the joint p.d.f.s f(x|H0) and f(x|H1).
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In the usual case where the likelihood ratio (44) cannot be used explicitly,
there exist a variety of other multivariate classifiers that effectively separate
different types of events. Methods often used in HEP include neural net-
works or Fisher discriminants. Recently, further classification methods from
machine-learning have been applied in HEP analyses; these include probability
density estimation (PDE) techniques, kernel-based PDE (KDE or Parzen win-
dow), support vector machines, and decision trees. Techniques such as “boost-
ing” and “bagging” can be applied to combine a number of classifiers into a
stronger one with greater stability with respect to fluctuations in the training
data. Descriptions of these methods can be found in (Hastie et al. 2009; Webb
2002; Kuncheva 2004) and Proceedings of the PHYSTAT conference series
(PHYSTAT Conference Series). Software for HEP includes the TMVA (Höcker
et al. 2007) and StatPatternRecognition (Narsky 2005) packages.

5.2 Significance tests

Often one wants to quantify the level of agreement between the data and a hy-
pothesis without explicit reference to alternative hypotheses. This can be done
by defining a statistic t, which is a function of the data whose value reflects
in some way the level of agreement between the data and the hypothesis. The
user must decide what values of the statistic correspond to better or worse
levels of agreement with the hypothesis in question; for many goodness-of-fit
statistics, there is an obvious choice.

The hypothesis in question, say, H0, will determine the p.d.f. g(t|H0) for
the statistic. The significance of a discrepancy between the data and what
one expects under the assumption of H0 is quantified by giving the p-value,
defined as the probability to find t in the region of equal or lesser compatibility
with H0 than the level of compatibility observed with the actual data. For
example, if t is defined such that large values correspond to poor agreement
with the hypothesis, then the p-value would be

p =

∫
∞

tobs

g(t|H0) dt , (45)

where tobs is the value of the statistic obtained in the actual experiment. The
p-value should not be confused with the size (significance level) of a test,
or the confidence level of a confidence interval (Sec. 6), both of which are
pre-specified constants.

The p-value is a function of the data, and is therefore itself a random vari-
able. If the hypothesis used to compute the p-value is true, then for continuous
data, p will be uniformly distributed between zero and one. Note that the p-
value is not the probability for the hypothesis; in frequentist statistics, this is
not defined. Rather, the p-value is the probability, under the assumption of a
hypothesis H0, of obtaining data at least as incompatible with H0 as the data
actually observed.
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When searching for a new phenomenon, one tries to reject the hypothesis
H0 that the data are consistent with known, e.g., Standard Model processes.
If the p-value of H0 is sufficiently low, then one is willing to accept that some
alternative hypothesis is true. Often one converts the p-value into an equiva-
lent significance Z, defined so that a Z standard deviation upward fluctuation
of a Gaussian random variable would have an upper tail area equal to p, i.e.,

Z = Φ−1(1 − p) . (46)

Here Φ is the cumulative distribution of the Standard Gaussian, and Φ−1 is its
inverse (quantile) function. Often in HEP, the level of significance where an
effect is said to qualify as a discovery is Z = 5, i.e., a 5σ effect, corresponding
to a p-value of 2.87 × 10−7. One’s actual degree of belief that a new process
is present, however, will depend in general on other factors as well, such as
the plausibility of the new signal hypothesis and the degree to which it can
describe the data, one’s confidence in the model that led to the observed
p-value, and possible corrections for multiple observations out of which one
focuses on the smallest p-value obtained (the “look-elsewhere effect”). For a
review of how to incorporate systematic uncertainties into p-values see, e.g.,
(Demortier 2007).

When estimating parameters using the method of least squares, one ob-
tains the minimum value of the quantity χ2 from Eq. (29). This statistic can
be used to test the goodness-of-fit, i.e., the test provides a measure of the sig-
nificance of a discrepancy between the data and the hypothesized functional
form used in the fit. It may also happen that no parameters are estimated
from the data, but that one simply wants to compare a histogram, e.g., a
vector of Poisson distributed numbers n = (n1, . . . , nN ), with a hypothesis
for their expectation values νi = E[ni]. As the distribution is Poisson with
variances σ2

i = νi, the quantity χ2 of Eq. (29) becomes Pearson’s chi-square
statistic,

χ2 =
N∑

i=1

(ni − νi)
2

νi
. (47)

If the hypothesis ν = (ν1, . . . , νN ) is correct, and if the expected values νi

in (47) are sufficiently large (in practice, this will be a good approximation
if all νi > 5), then the χ2 statistic will follow the chi-square p.d.f. with the
number of degrees of freedom equal to the number of measurements N minus
the number of fitted parameters. The minimized χ2 from Eq. (29) also has
this property if the measurements yi are Gaussian.

Alternatively, one may fit parameters and evaluate goodness-of-fit by min-
imizing −2 lnλ from Eq. (28). One finds that the distribution of this statistic
approaches the asymptotic limit faster than does Pearson’s χ2, and thus com-
puting the p-value with the chi-square p.d.f. will in general be better justified
(see (Cousins and Baker 1984) and references therein).
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Assuming the goodness-of-fit statistic follows a chi-square p.d.f., the p-
value for the hypothesis is then

p =

∫
∞

χ2

f(z; nd) dz , (48)

where f(z; nd) is the chi-square p.d.f. and nd is the appropriate number of
degrees of freedom. If the conditions for using the chi-square p.d.f. do not hold,
the statistic can still be defined as before, but its p.d.f. must be determined
by other means in order to obtain the p-value, e.g., using a Monte Carlo
calculation.

Since the mean of the chi-square distribution is equal to nd, one expects
in a “reasonable” experiment to obtain χ2 ≈ nd. Hence the quantity χ2/nd

is sometimes reported. Since the p.d.f. of χ2/nd depends on nd, however, one
must report nd as well if one wishes to determine the p-value.

5.3 Bayesian model selection

In Bayesian statistics, all of one’s knowledge about a model is contained in
its posterior probability, which one obtains using Bayes’ theorem (40). Thus
one could reject a hypothesis H if its posterior probability P (H |x) is suffi-
ciently small. The difficulty here is that P (H |x) is proportional to the prior
probability P (H), and there will not be a consensus about the prior proba-
bilities for the existence of new phenomena. Nevertheless one can construct
a quantity called the Bayes factor (described below), which can be used to
quantify the degree to which the data prefer one hypothesis over another, and
is independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors of
parameters θi and θj , respectively. Some of the components will be common
to both models and others may be distinct. The full prior probability for each
model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) , (49)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is the nor-
malized p.d.f. of its parameters. For each model, the posterior probability is
found using Bayes’ theorem,

P (Hi|x) =

∫
L(x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (50)

where the integration is carried out over the internal parameters θi of the
model. The ratio of posterior probabilities for the models is therefore

P (Hi|x)

P (Hj |x)
=

∫
L(x|θi, Hi)π(θi|Hi) dθi∫
L(x|θj , Hj)π(θj |Hj) dθj

P (Hi)

P (Hj)
. (51)

The Bayes factor is defined as
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Bij =

∫
L(x|θi, Hi)π(θi|Hi) dθi∫
L(x|θj , Hj)π(θj |Hj) dθj

. (52)

This gives what the ratio of posterior probabilities for models i and j would be
if the overall prior probabilities for the two models were equal. If the models
have no nuisance parameters i.e., no internal parameters described by priors,
then the Bayes factor is simply the likelihood ratio. The Bayes factor therefore
shows by how much the probability ratio of model i to model j changes in the
light of the data, and thus can be viewed as a numerical measure of evidence
supplied by the data in favour of one hypothesis over the other.

Although the Bayes factor is by construction independent of the overall
prior probabilities P (Hi) and P (Hj), it does require priors for all internal
parameters of a model, i.e., one needs the functions π(θi|Hi) and π(θj |Hj).
In a Bayesian analysis where one is only interested in the posterior p.d.f. of
a parameter, it may be acceptable to take an unnormalizable function for
the prior (an improper prior) as long as the product of likelihood and prior
can be normalized. But improper priors are only defined up to an arbitrary
multiplicative constant, which does not cancel in the ratio (52). Furthermore,
although the range of a constant normalized prior is unimportant for param-
eter determination (provided it is wider than the likelihood), this is not so for
the Bayes factor when such a prior is used for only one of the hypotheses. So
to compute a Bayes factor, all internal parameters must be described by nor-
malized priors that represent meaningful probabilities over the entire range
where they are defined.

An exception to this rule may be considered when the identical parameter
appears in the models for both numerator and denominator of the Bayes
factor. In this case one can argue that the arbitrary constants would cancel.
One must exercise some caution, however, as parameters with the same name
and physical meaning may still play different roles in the two models.

Both integrals in equation (52) are of the form

m =

∫
L(x|θ)π(θ) dθ , (53)

which is called the marginal likelihood (or in some fields called the evidence).
A review of Bayes factors including a discussion of computational issues is
Ref. (Kass and Raftery 1995).

6 Intervals and limits

When the goal of an experiment is to determine a parameter θ, the result
is usually expressed by quoting, in addition to the point estimate, some sort
of interval which reflects the statistical precision of the measurement. In the
simplest case, this can be given by the parameter’s estimated value θ̂ plus or
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minus an estimate of the standard deviation of θ̂, σ
θ̂
. If, however, the p.d.f.

of the estimator is not Gaussian or if there are physical boundaries on the
possible values of the parameter, then one usually quotes instead an interval
according to one of the procedures described below.

The choice of method may be influenced by practical considerations such
as ease of producing an interval from the results of several measurements.
Of course the experimenter is not restricted to quoting a single interval or
limit; one may choose, for example, first to communicate the result with a
confidence interval having certain frequentist properties, and then in addition
to draw conclusions about a parameter using Bayesian statistics. It is recom-
mended, however, that there be a clear separation between these two aspects
of reporting a result. In the remainder of this section, we assess the extent to
which various types of intervals achieve the goals stated here.

6.1 Bayesian intervals

As described in Sec. 4.4, a Bayesian posterior probability may be used to
determine regions that will have a given probability of containing the true
value of a parameter. In the single parameter case, for example, an interval
(called a Bayesian or credible interval) [θlo, θup] can be determined which
contains a given fraction 1 − α of the posterior probability, i.e.,

1 − α =

∫ θup

θlo

p(θ|x) dθ . (54)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or
θup to infinity. In other cases, one might choose θlo and θup such that p(θ|x)
is higher everywhere inside the interval than outside; these are called highest
posterior density (HPD) intervals. Note that HPD intervals are not invariant
under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can
simply be set to zero for negative values. An important example is the case
of a Poisson variable n, which counts signal events with unknown mean s, as
well as background with mean b, assumed known. For the signal mean s, one
often uses the prior

π(s) =

{
0 s < 0
1 s ≥ 0

. (55)

This prior is regarded as providing an interval whose frequentist properties
can be studied, rather than as representing a degree of belief. In the absence
of a clear discovery, (e.g., if n = 0 or if in any case n is compatible with
the expected background), one usually wishes to place an upper limit on
s (see, however, (Feldman and Cousins 1998) on “flip-flopping” concerning
frequentist coverage). Using the likelihood function for Poisson distributed n,
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L(n|s) =
(s + b)n

n!
e−(s+b) , (56)

along with the prior (55) in (40) gives the posterior density for s. An upper
limit sup at confidence level (or here, rather, credibility level) 1 − α can be
obtained by requiring

1 − α =

∫ sup

−∞

p(s|n)ds =

∫ sup

−∞
L(n|s)π(s) ds

∫
∞

−∞
L(n|s)π(s) ds

, (57)

where the lower limit of integration is effectively zero because of the cut-off
in π(s). By relating the integrals in Eq. (57) to incomplete gamma functions,
the equation reduces to

α = e−sup

∑n
m=0(sup + b)m/m!∑n

m=0 bm/m!
. (58)

This must be solved numerically for the limit sup. It so happens that for the
case of b = 0, the upper limits obtained in this way coincide numerically
with the values of the frequentist upper limits discussed in Section 6.2. The
frequentist properties of confidence intervals for the Poisson mean obtained
in this way are discussed in Refs. (Cousins 1995) and (Roe and Woodroofe
2001).

As in any Bayesian analysis, it is important to show how the result would
change if one uses different prior probabilities. For example, one could consider
the Jeffreys prior as described in Sec. 4.4. For this problem one finds the
Jeffreys prior π(s) ∝ 1/

√
s + b for s ≥ 0 and zero otherwise. As with the

constant prior, one would not regard this as representing one’s prior beliefs
about s, both because it is improper and also as it depends on b. Rather it is
used with Bayes’ theorem to produce an interval whose frequentist properties
can be studied.

6.2 Frequentist confidence intervals

The frequentist approach to interval estimation is based on the the concept
of a confidence interval. These are constructed so as to contain the true value
of the parameter with a minimum specified probability, called the confidence
level. To construct a confidence interval, consider a test (see Sec. 5) of the
hypothesis that the parameter’s true value is θ (assume one constructs a
test for all physical values of θ). One then excludes all values of θ where the
hypothesis would be rejected at a significance level less than α. The remaining
values constitute the confidence interval at confidence level CL = 1 − α.

In this procedure, one is still free to choose the test to be used. One
possibility is use a test statistic based on the likelihood ratio,

λ =
f(x; θ)

f(x; θ̂ )
, (59)
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where θ̂ is the value of the parameter which, out of all allowed values, maxi-
mizes f(x; θ). This results in the intervals described by Feldman and Cousins
(Feldman and Cousins 1998).

Profile likelihood and treatment of nuisance parameters

As mentioned in Section 6.1, one may have a model containing parameters
that must be determined from data, but which are not of any interest in the
final result (nuisance parameters). Suppose the likelihood L(θ, ν) depends on
parameters of interest θ and nuisance parameters ν. The nuisance parame-
ters can be effectively removed from the problem by constructing the profile
likelihood, defined by

Lp(θ) = L(θ, ̂̂ν(θ)) , (60)

where ̂̂ν(θ) is given by the ν that maximizes the likelihood for fixed θ. The
profile likelihood may then be used to construct tests of or intervals for the
parameters of interest. For example, one may construct the profile likelihood
ratio,

λp(θ) =
Lp(θ)

L(θ̂, ν̂)
, (61)

where θ̂ and ν̂ are the ML estimators. The ratio λp can be used in place
of the likelihood ratio (59) for inference about θ. The resulting intervals for
the parameters of interest are not guaranteed to have the exact coverage
probability for all values of the nuisance parameters, but in cases of practical
interest the approximation is found to be very good.

Gaussian distributed measurements

One often encounters the case where the data consist of a single random value
x modeled as following a Gaussian distribution with unknown mean µ. This
is often the case when x represents an estimator for a parameter and one has
a sufficiently large data sample. Using the observed value of x, one can easily
constuct a confidence interval for µ. Assuming the Gaussian distribution has
a known standard deviation σ, the quantity

1 − α =
1√
2πσ

∫ µ+δ

µ−δ

e−(x−µ)2/2σ2

dx = erf

(
δ√
2 σ

)
(62)

is the probability that the measured value x will fall within ±δ of the true
value µ. From the symmetry of the Gaussian with respect to x and µ, this is
also the probability for the interval x ± δ to include µ.

Figure 1 shows a δ = 1.64σ confidence interval unshaded. The choice δ = σ
gives an interval called the standard error which has 1 − α = 68.27% if σ is
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known. Values of α for other frequently used choices of δ are given in Table 2.
We can set a one-sided (upper or lower) limit by excluding values of µ above
x + δ (or below x − δ). The values of α for such limits are half the values in
Table 2.

σ)/µ(x-
-3 -2 -1 0 1 2 3

)σ,µ
f(

x;

α1 - 

/2α /2α

Fig. 1. Illustration of a symmetric 90% confidence interval (unshaded) for a mea-
surement of a single quantity with Gaussian errors. Integrated probabilities, defined
by α, are as shown.

Table 2. Area of the tails α outside ±δ from the mean of a Gaussian distribution.

α δ α δ
0.3173 1σ 0.2 1.28σ

4.55 × 10−2 2σ 0.1 1.64σ
2.7 × 10−3 3σ 0.05 1.96σ
6.3 × 10−5 4σ 0.01 2.58σ
5.7 × 10−7 5σ 0.001 3.29σ
2.0 × 10−9 6σ 10−4 3.89σ

The relation (62) can be re-expressed using the cumulative distribution
function for the chi-square distribution as

α = 1 − F (χ2; n) , (63)

for χ2 = (δ/σ)2 and n = 1 degree of freedom.

For the case of a n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one requires the

full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
in Sections 4.2 and 4.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators
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will be distributed according to a multivariate Gaussian centred about the
true (unknown) values θ, and furthermore, the likelihood function itself takes
on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 2, corre-
sponding to a contour χ2 = χ2

min + 1 or lnL = lnLmax − 1/2. The ellipse is

centred about the estimated values θ̂, and the tangents to the ellipse give the
standard deviations of the estimators, σi and σj . The angle of the major axis
of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (64)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.

iθ

jθ

iθ

jθ

φ

iσ

iσ

jσ jσ

Fig. 2. Standard error ellipse for the estimators θ̂i and θ̂j . In this case the correlation
is negative.

As in the single-variable case, because of the symmetry of the Gaussian
function between θ and θ̂, one finds that contours of constant lnL or χ2 cover
the true values with a certain, fixed probability. That is, the confidence region
is determined by

lnL(θ) ≥ lnLmax − ∆ lnL , (65)

or where a χ2 has been defined for use with the method of least-squares,

χ2(θ) ≤ χ2
min + ∆χ2 . (66)

Values of ∆χ2 or 2∆ lnL are given in Table 3 for several values of the coverage
probability and number of fitted parameters.

For finite data samples, the probability for the regions determined by equa-
tions (65) or (66) to cover the true value of θ will depend on θ, so these are
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Table 3. ∆χ2 or 2∆ ln L corresponding to a coverage probability 1−α in the large
data sample limit, for joint estimation of m parameters.

(1 − α) (%) m = 1 m = 2 m = 3

68.27 1.00 2.30 3.53
90.0 2.71 4.61 6.25
95.0 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99.0 6.63 9.21 11.34
99.73 9.00 11.83 14.16

not exact confidence regions according to our previous definition. Neverthe-
less, they can still have a coverage probability only weakly dependent on the
true parameter, and approximately as given in Table tab:stat-stattwo. In any
case, the coverage probability of the intervals or regions obtained according
to this procedure can in principle be determined as a function of the true
parameter(s), for example, using a Monte Carlo calculation.

Poisson or binomial data

Another important class of measurements consists of counting a certain num-
ber of events, n. In this section, we will assume these are all events of the
desired type, i.e., there is no background. If n represents the number of events
produced in a reaction with cross section σ, say, in a fixed integrated lumi-
nosity L, then it follows a Poisson distribution with mean ν = σL. If, on
the other hand, one has selected a larger sample of N events and found n
of them to have a particular property, then n follows a binomial distribution
where the parameter p gives the probability for the event to possess the prop-
erty in question. This is appropriate, e.g., for estimates of branching ratios or
selection efficiencies based on a given total number of events.

For the case of Poisson distributed n, the upper and lower limits on the
mean value ν can be found from

νlo = 1
2
F−1

χ2 (αlo; 2n) , (67)

νup = 1
2
F−1

χ2 (1 − αup; 2(n + 1)) , (68)

where the upper and lower limits are at confidence levels of 1−αlo and 1−αup,
respectively, and F−1

χ2 is the quantile of the chi-square distribution (inverse of

the cumulative distribution). For central confidence intervals at confidence
level 1 − α, set αlo = αup = α/2.

For the case of binomially distributed n successes out of N trials with
probability of success p, the upper and lower limits on p are found to be
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plo =
nF−1

F [αlo; 2n, 2(N − n + 1)]

N − n + 1 + nF−1
F [αlo; 2n, 2(N − n + 1)]

, (69)

pup =
(n + 1)F−1

F [1 − αup; 2(n + 1), 2(N − n)]

(N − n) + (n + 1)F−1
F [1 − αup; 2(n + 1), 2(N − n)]

. (70)

Here F−1
F is the quantile of the F distribution (also called the Fisher–Snedecor

distribution; see (James 2007)).

7 Conclusions

Given the high cost and complexity of experiments in Particle Physics it has
become increasingly important to use data analysis methods that extract the
maximum information from the data in a way that takes into account all of
the known uncertainties in the measurement. Here the key is to construct a
probabilistic model which is sufficiently accurate to be regarded as correct, and
this can be achieved with a model containing a sufficient number of adjustable
parameters. The accuracy achieved by including additional parameters must
be balanced against the price, however, of reducing one’s sensitivity to the
parameters of interest, such as those which may point to a potential discovery.

The two primary schools of statistical inference — frequentist and Bayesian
— provide different but related approaches to this task. In the fortunate case
where the information from the data overwhelms any prior knowledge, the
two approaches appear to coalesce, although the interpretation of the results
remains distinct. One can of course use both approaches; if they point to the
same conclusion, then this can only increase one’s confidence. If they do not,
then one will have to find out why, and this can also lead to important realisa-
tions, such as unexpected sensitivity to prior information or to specific model
assumptions. In either case the result of an experiment should be presented
along with sufficient information so that it can be incorporated into future
analyses.
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Index

Bayes factor, 18
Bayes’ theorem, 2
Bayesian intervals, 20
Bayesian statistics, 12

objective, 13
beta distribution, 6
binomial distribution, 6

chi-square distribution, 6
confidence intervals, 19, 21

binomial data, 25
Poisson data, 25

correlation coefficient, 5
covariance, 5
cumulative distribution function, 4

estimate, 6
estimator, 6

bias, 6
consistency, 6
efficiency, 6

expectation value, 4
exponential distribution, 6

gamma distribution, 6
Gaussian distribution, 6

multivariate, 6
Gaussian measurements, 22
goodness-of-fit, 17

hypothesis
composite, 15
simple, 15

Jeffrey’s rule, 13

Kolmogorov axioms, 2

law of total probability, 3
least squares, 10

goodness-of-fit, 12
linear problem, 11

likelihood, 3
likelihood ratio, 22
limits, 19

binomial data, 25
Poisson data, 25

marginal likelihood, 19
maximum likelihood, 8

extended, 9
mean, 4
mean-squared error, 6
median, 5

nuisance parameter, 22

p.d.f., 4
conditional, 5
marginal, 5
posterior, 13
prior, 13

parameter estimation, 6
Pearson’s chi-square statistic, 17
Poisson distribution, 6
probability, 2

conditional, 2
limiting frequency, 3
posterior, 3
prior, 3
subjective, 3

probability density function, 4
probability distribution, 6
profile likelihood, 22
p-value, 16

random variable, 4
independence, 5
moment, 4

Rao-Cramér-Frechet bound, 6

sample space, 2
significance level, 15
significance test, 14, 16
standard deviation, 5
statistical test, 14

hypothesis, 14
significance, 14

Student’s t distribution, 6

test statistic, 15

uniform distribution, 6

variance, 4




