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Some statistics books, papers, etc.  
J. Beringer et al. (Particle Data Group), Review of Particle Physics, 
Phys. Rev. D86, 010001 (2012); see also pdg.lbl.gov  
sections on probability statistics, Monte Carlo 

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
 see also www.pp.rhul.ac.uk/~cowan/sda 

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989 

 see also hepwww.ph.man.ac.uk/~roger/book.html 

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 

F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 

S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 
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Quick review of probablility 
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations. 

 Probability = limiting frequency 

Probabilities such as 

 P (WIMPs exist),  
 P (0.298 < Ωm < 0.332),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, interpretation of probability extended to 
degree of belief (subjective probability).  Use this for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayesian methods can provide more natural treatment of  non- 
repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 

No golden rule for priors (“if-then” character of Bayes’ thm.) 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 
We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 
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Quick review of frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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Example of ML 
Consider a scattering angle distribution with x = cos θ, 

Data:  x1,..., xn, n = 2000 events. 

As test generate with MC using α = 0.5, β = 0.5 

From data compute log-likelihood: 
 

Maximize numerically (e.g., program MINUIT) 
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Example of ML:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  Here no binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Variance of ML estimators:  graphical method 
Often (e.g., large sample case) one can 
approximate the covariances using only 
the likelihood L(θ): 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

This translates into a simple 
graphical recipe: 
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Variance of ML estimators:  MC 
To find the ML estimate itself one only needs the likelihood L(θ) . 

In principle to find the covariance of the estimators, one requires 
the full model L(x|θ).  E.g., simulate many times independent data  
sets and look at distribution of the resulting estimates: 
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A quick review of frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 
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Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α	


But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 
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Defining a multivariate critical region 
For each event, measure, e.g., 

 x1 =  missing energy, x2 = electron pT, x3 = ... 

Each event is a point in n-dimensional x-space; critical region 
is now defined by a ‘decision boundary’ in this space. 
What is best way to determine the boundary? 

W 
H1 

H0 Perhaps with ‘cuts’: 
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Other multivariate decision boundaries 
Or maybe use some other sort of decision boundary: 

W 
H1 

H0 

W 
H1 

H0 

linear or nonlinear 

Multivariate methods for finding optimal critical region have 
become a Big Industry (neural networks, boosted decision trees,...). 

No time here to cover these but see, e.g., slides and resources on 
http://www.pp.rhul.ac.uk/~cowan/stat_valencia.html 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 21 

Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant which  
determines  the power. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Invisibles 2013 / Statistical Data Analysis 

E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

Invisibles 2013 / Statistical Data Analysis 

We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ . 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 - α ). 

The interval will cover the true value of θ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α. 
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Ingredients for a frequentist test 
In general to carry out a test we need to know the distribution of  
the test statistic t(x), and this means we need the full model P(x|H). 

Often one can construct a test statistic whose distribution  
approaches a well-defined form (almost) independent of the  
distribution of the data, e.g., likelihood ratio to test a value of θ: 

In the large sample limit tθ follows a chi-square distribution with 
number of degrees of freedom = number of components in θ 
(Wilks’ theorem). 

So here one doesn’t need the full model P(x|θ), only the observed  
value of tθ. 
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The Poisson counting experiment 
Suppose we observe n events; these can consist of: 

nb events from known processes (background) 
ns events from a new process (signal) 

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb 
is also Poisson, mean = s + b: 

Suppose b = 0.5, and we observe nobs = 5.  Should we claim 
evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Frequentist upper limit on Poisson parameter 
Consider again the case of observing n ~ Poisson(s + b). 

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL. 

Relevant alternative is s = 0 (critical region at low n) 

p-value of hypothesized s is P(n ≤ nobs; s, b) 

Upper limit sup at CL = 1 – α found from 
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n ~ Poisson(s+b):  frequentist upper limit on s 
For low fluctuation of n formula can give negative result for sup; 
i.e. confidence interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when testing parameter values for which 
one has very little experimental sensitivity, e.g., very small s. 
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  



G. Cowan  Invisibles 2013 / Statistical Data Analysis 35 

Bayesian interval with flat prior for s 
Solve to find limit sup: 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as one-sided frequentist case (‘coincidence’).  

where  
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Bayesian interval with flat prior for s 
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit. 

Never goes negative.  Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  
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Priors from formal rules (cont.)  
For a review of priors obtained by formal rules see, e.g., 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction, especially the reference priors 
of Bernardo and Berger; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111. 

D. Casadei, Reference analysis of the signal + background model  
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270. 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ×       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 50 

Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
Specified µ	


maximize L	


The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even if physical models have µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 

G. Cowan  Invisibles 2013 / Statistical Data Analysis 

So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ′),  
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 	
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ	

level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ one can use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Monte Carlo test of asymptotic formulae 	
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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 Back to Poisson counting experiment 
n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Adding a control measurement for b 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 

(The “on/off” problem:  Cranmer 2005; Cousins,  
Linnemann, and Tucker 2008; Li and Ma 1983,...) 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So this “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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A toy example 
For each event we measure two variables, x = (x1, x2). 

Suppose that for background events (hypothesis H0),  

and for a certain signal model (hypothesis H1) they follow 

where x1, x2  ≥ 0 and C is a normalization constant. 
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Likelihood ratio as test statistic 
In a real-world problem we usually wouldn’t have the pdfs  
f(x|H0) and f(x|H1), so we wouldn’t be able to evaluate the 
likelihood ratio  

for a given observed x, hence 
the need for multivariate  
methods to approximate this  
with some other function. 

But in this example we can  
find contours of constant  
likelihood ratio such as: 
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Event selection using the LR 
Using Monte Carlo, we can find the distribution of the likelihood 
ratio or equivalently of 

signal (H1) 

background 
 (H0) 

From the Neyman-Pearson lemma 
we know that by cutting on this 
variable we would select a signal 
sample with the highest signal 
efficiency (test power) for a given 
background efficiency. 
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Search for the signal process 
But what if the signal process is not known to exist and we want 
to search for it.   The relevant hypotheses are therefore 

 H0:  all events are of the background type 
 H1:  the events are a mixture of signal and background 

Rejecting H0 with Z > 5 constitutes “discovering” new physics. 

Suppose that for a given integrated luminosity, the expected number 
of signal events is s, and for background b. 

The observed number of events n will follow a Poisson distribution: 
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Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 
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Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term 2s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 
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Distribution of Q 
Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of 
 b only 

p-value of s+b 

Suppose in real experiment 
Q is observed here. 

If ps+b < α, reject signal model s at confidence level 1 – α. 

If pb  < 2.9 × 10-7, reject background-only model (signif. Z = 5). 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 84 

Systematic uncertainties 
Previous example assumed all parameters were known exactly. 

 In practice they have some (systematic) uncertainty. 

Suppose e.g. uncertainty in expected number of background events 
b is characterized by a (Bayesian) pdf π(b). 

Maybe take a Gaussian, i.e., 

where b0 is the nominal (measured) value and σb is the estimated 
uncertainty. 

 In fact for many systematics a Gaussian pdf is hard to  
 defend – can use instead e.g. log-normal, gamma,... 
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Distribution of Q with systematics 
To get the desired p-values we need the pdf f (Q), but 
this depends on b, which we don’t know exactly.   

But we can obtain the prior predictive (marginal) model: 

With Monte Carlo, sample b from π(b), then use this to generate  
Q from f (Q|b), i.e., a new value of b is used to generate the data 
for every simulation of the experiment. 

This broadens the distributions of Q and thus increases the  
p-value (decreases significance Z) for a given Qobs. 

The model we are testing is not a “physical” model with fixed b,  
but rather a model averaged over b with respect to π(b)). 
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Distribution of Q with systematics (2) 
For s = 20, b0 = 100, σb = 20 this gives 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 
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Summary 

Parameter estimation: 
 Maximize likelihood function → ML estimator. 
 Bayesian estimator based on posterior pdf. 
 Confidence interval:  set of parameter values not rejected  
 in a test of size α = 1 – CL. 

Statistical tests: 
 Divide data spaced into two regions; depending on 
 where data are then observed, accept or reject hypothesis.  

Use in searches: 
 Design experiment with maximum probability to reject 
 no-signal hypothesis if signal is present. 
 Nuisance parameters needed to cover systematics; lead 
 to decrease in sensitivity. 
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Extra slides 
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More on treatment of nuisance parameters 

Suppose we test a value of θ  
with the profile likelihood ratio: 

We want a p-value of θ:  

Wilks’ theorem says in the large sample limit (and under some 
additional conditions) f(tθ|θ,ν) is a chi-square distribution with 
number of degrees of freedom equal to number of parameters of 
interest (number of components in θ). 

Simple recipe for p-value; holds regardless of the values of  
the nuisance parameters!  
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Frequentist treatment of nuisance 
parameters in a test (2) 

But for a finite data sample, f(tθ|θ,ν) still depends on ν. 

So what is the rule for saying whether we reject θ? 

Exact approach is to reject θ only if pθ < α (5%) for all possible ν. 

This can make it very hard to reject some values of θ; they might 
not be excluded for value of ν known to be highly disfavoured. 

Resulting confidence level too large (“over-coverage”). 
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Profile construction (“hybrid resampling”) 

Compromise procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the value of the nuisance 
parameter that best fits the data for the specified θ (the profiled 
values): 

The resulting confidence interval will have the correct coverage 
for the points  (!, ˆ̂"(!))

. Elsewhere it may under- or over-cover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Bayesian treatment of nuisance parameters 
Conceptually straightforward:  all parameters have a prior: 

Often  

Often  “non-informative” (broad compared to likelihood). 

Usually  “informative”, reflects best available info. on ν. 

Use with likelihood in Bayes’ theorem: 

To find p(θ|x), marginalize (integrate) over nuisance param.: 
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The marginal (integrated) likelihood 

If the prior factorizes: 

then one can compute the marginal likelihood as: 

This represents an average of models with respect to πν(ν) 
(also called “prior predictive” distribution). 

 Does not represent a realistic model for the data; 
 ν would not vary upon repetition of the experiment. 

Leads to same posterior for θ as before: 
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The “ur-prior” 
But where did πν(ν) come frome?  Presumably at an earlier 
point there was a measurement of some data y with 
likelihood L(y|ν), which was used in Bayes’theorem, 

and this “posterior” was subsequently used for πν (ν) for the 
next part of the analysis. 

But it depends on an “ur-prior” π0(ν), which still has to be 
chosen somehow (perhaps “flat-ish”). 

But once this is combined to form the marginal likelihood, the 
origin of the knowledge of ν may be forgotten, and the model 
is regarded as only describing the data outcome x. 
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The (pure) frequentist equivalent 
In a purely frequentist analysis, one would regard both 
x and y as part of the data, and write down the full likelihood: 

“Repetition of the experiment” here means generating both 
x and y according to the distribution above. 

So we could either say that πν(ν) encapsulates all of our prior  
knowledge about ν and forget that it came from a measurement, 

or regard both x and y as measurements, 

In the Bayesian approach both give the same result. 
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Frequentist use of Bayesian ingredients 
For subjective Bayesian, end result is the posterior p(θ|x). 

Use this, e.g., to compute an upper limit at 95% “credibility level”: 

→ Degree of belief that θ < θup is 95%. 

But θup is θup (x), a function of the data.  So we can also ask  

(a frequentist question) 

Here we are using a Bayesian result in a frequentist construct  
by studying the coverage probability, which may be greater or 
less than the nominal credibility level of 95%. 
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More Bayesian ingredients in frequentist tests 
Another way to use Bayesian ingredients to obtain a frequentist 
result is to construct a test based on a ratio of marginal likelihoods: 

Except in simple cases this will be difficult to compute; often use 
instead ratio of profile likelihoods, 

or in some cases one may just use the ratio of likelihoods for 
some chosen values of the nuisance parameters.   

Here the choice of statistic influences the optimality of the 
test, not its “correctness”. 
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Prior predictive distribution for statistical test 
The more important use of a Bayesian ingredient is in computing 
the distribution of the statistic.  One can take this to be the Bayesian 
averaged model (prior predictive distribution), i.e., 

 Generate x ~ Lm(x|s) to determine f(t(x)|s), 

 Generate x ~ Lm (x|b) to determine f(t(x)|b). 

Use of the marginal likelihood results in a broadening of the 
distributions of t(x) and effectively builds in the systematic 
uncertainty on the nuisance parameter into the test. 

(Example to follow.) 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 99 

Prior predictive distribution for statistical test 
Note the important difference between two approaches: 

1)  Pure frequentist:  find “correct” model (enough nuisance  
parameters) and construct a test statistic whose distribution is  
almost independent of the nuisance parameters (and/or use profile  
construction). 

2)  Hybrid frequentist/Bayesian:  construct an averaged model  
by integrating over a prior for the nuisance parameters; use this to  
find sampling distribution of test statistic (which itself may be 
based on a ratio of marginal or profile likelihoods). 

Both answer well-defined questions, but the first approach  
(in my view) has important advantages: 

 Computationally very easy if large sample formulae valid; 
 Model corresponds to “real” repetition of the experiment. 
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Bayesian limits on s with uncertainty on b 
Consider n ~ Poisson(s+b) and take e.g. as prior probabilities 

Put this into Bayes’ theorem, 

Marginalize over the nuisance parameter b,  

Then use p(s|n) to find intervals for s with any desired  
probability content. 
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Interval estimation:  confidence interval 
from inversion of a test 

Suppose a model contains a parameter µ; we want to know which 
values are consistent with the data and which are disfavoured. 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The probability that the true value of µ will be rejected is 
 not greater than α, so by construction the confidence interval  
 will contain the true value of µ with probability ≥  1 – α. 

The interval depends on the choice of the test (critical region). 

If the test is formulated in terms of a p-value, pµ, then the  
confidence interval represents those values of µ for which pµ > α. 

To find the end points of the interval, set pµ = α and solve for µ. 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 105 

Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 



G. Cowan  Invisibles 2013 / Statistical Data Analysis 108 

The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 
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How to read the green and yellow limit plots 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

For every value of mH, find the CLs upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 



I.e. for purposes of setting an upper limit, one does not regard 
an upwards fluctuation of the data as representing incompatibility 
with the hypothesized µ. 

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 
For purposes of setting an upper limit on µ use 

where 
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Choice of test for limits (2) 
In other cases we want to exclude µ on the grounds that some other 
measure of incompatibility between it and the data exceeds some 
threshold. 

For example, the process may be known to exist, and thus µ = 0 
is no longer an interesting alternative. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain both high and  low data values.   
       → unified intervals, G. Feldman, R. Cousins,  

 Phys. Rev. D 57, 3873–3889 (1998) 

The Big Debate is whether to use one-sided or unified intervals 
in cases where the relevant alternative is at small (or zero) values 
of the parameter.  Professional statisticians have voiced support 
on both sides of the debate.  
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Unified (Feldman-Cousins) intervals 
We can use directly 

G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 3 

as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   
     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 

Lower edge of interval can be at µ = 0, depending on data. 
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Distribution of tµ	


Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  



G. Cowan  Statistics for HEP / LAL Orsay, 3-5 January  2012 / Lecture 3 116 

Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 


