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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests 

Lecture 2:  Discovery and Limits 
 Comments on multivariate methods (brief) 
 p-values 
 Testing the background-only hypothesis:  discovery 
 Testing signal hypotheses:  setting limits 

Lecture 3:  Systematic uncertainties and further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 The look-elsewhere effect 
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Comment on Multivariate Methods 

Naively one might choose the input variables for a 
multivariate analysis to be those that, by themselves, give 
some discrimination between signal and background. 

The following simple example shows that this is not always 
the best approach.  Variables related to the quality of an 
event’s reconstruction can help in a multivariate analysis, 
even if that variable by itself gives no discrimination between 
event types. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region for classification  
is determined by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 



G. Cowan  iSTEP 2016, Beijing / Statistics for Particle Physics / Lecture 2 page 7 

Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 
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2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 
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Testing significance / goodness-of-fit 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Decide what part of the  
data space represents less  
compatibility with H than  
does the point       less  

compatible 
with H 

     more  
compatible 
with H 

Note – “less compatible 
with H” means “more 
compatible with some 
alternative H′ ”. 
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p-values 

where π(H) is the prior probability for H. 

Express ‘goodness-of-fit’ by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

In frequentist statistics we don’t talk about P(H) (unless H  
represents a repeatable observation). In Bayesian statistics we do;  
use Bayes’ theorem to obtain 

For now stick with the frequentist approach;  
result is p-value, regrettably easy to misinterpret as P(H). 
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Distribution of  the p-value 
The p-value is a function of the data, and is thus itself a random 
variable with a given distribution.  Suppose the p-value of H is  
found from a test statistic t(x) as 
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The pdf of pH under assumption of H is 

In general for continuous data,  under  
assumption of H, pH ~ Uniform[0,1] 
and is concentrated toward zero for  
Some class of relevant alternatives. pH 

g(pH|H) 

0 1 

g(pH|H′) 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 
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We can define the critical region of a test of H0 with size α as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ. 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 -  α ). 

The interval will cover the true value of θ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α.   

To find edge of interval (the “limit”), set pθ = α and solve for θ. 
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Frequentist upper limit on Poisson parameter 
Consider again the case of observing n ~ Poisson(s + b). 

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL. 

When testing s values to find upper limit, relevant alternative is  
s = 0 (or lower s), so critical region at low n and p-value of  
hypothesized s is P(n ≤ nobs; s, b). 

Upper limit sup at CL = 1 – α from setting α = ps and solving for s: 
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Frequentist upper limit on Poisson parameter 
Upper limit sup at CL = 1 – α found from ps = α.  

nobs = 5,  

b = 4.5 
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n ~ Poisson(s+b):  frequentist upper limit on s 
For low fluctuation of n formula can give negative result for sup; 
i.e. confidence interval is empty. 
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Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when testing parameter values for which 
one has very little experimental sensitivity, e.g., very small s. 
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve to find limit sup: 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as one-sided frequentist case (‘coincidence’).  

where  
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Bayesian interval with flat prior for s 
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit. 

Never goes negative.  Doesn’t depend on b if n = 0. 
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Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  
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Priors from formal rules (cont.)  
For a review of priors obtained by formal rules see, e.g., 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction, especially the reference priors 
of Bernardo and Berger; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111. 

D. Casadei, Reference analysis of the signal + background model  
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270. 
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Approximate confidence intervals/regions  
from the likelihood function 

G. Cowan  

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio 

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define 

so higher tθ means worse agreement between θ and the data. 

p-value of θ therefore  

need pdf 
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Confidence region from Wilks’ theorem 

G. Cowan  

Wilks’ theorem says (in large-sample limit and providing  
certain conditions hold...) 

chi-square dist. with # d.o.f. =  
# of components in θ = (θ1, ..., θn). 

Assuming this holds, the p-value is 

To find boundary of confidence region set pθ = α and solve for tθ: 

where 
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Confidence region from Wilks’ theorem (cont.) 

G. Cowan  

i.e., boundary of confidence region in θ space is where 

For example, for 1 – α = 68.3% and n = 1 parameter, 

and so the 68.3% confidence level interval is determined by 

Same as recipe for finding the estimator’s standard deviation, i.e., 

is a 68.3% CL confidence interval. 
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Example of interval from ln L 
For n = 1 parameter, CL = 0.683, Qα = 1. 

Parameter estimate and  
approximate 68.3% CL  
confidence interval: 

Exponential example, now with only 5 events: 
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Multiparameter case 

G. Cowan  

For increasing number of parameters, CL = 1 – α decreases for 
confidence region determined by a given  



iSTEP 2016, Beijing / Statistics for Particle Physics / Lecture 2 36 

Multiparameter case (cont.) 

G. Cowan  

Equivalently, Qα increases with n for a given CL = 1 – α. 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
specified µ

maximize L

The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma).  In practice the profile LR is near-
optimal. 

Important advantage of profile LR is that its distribution becomes 
independent of nuisance parameters in large sample limit. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

i.e. here only regard upward fluctuation of data as evidence  
against the background-only hypothesis. 

Note that even though here physically µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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p-value for discovery 
Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

use e.g. asymptotic formula 

From p-value get  
equivalent significance, 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 

Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Example of discovery:  the p0 plot 
The “local” p0 means the p-value of the background-only 
hypothesis obtained from the test of µ = 0 at each individual mH, 
without any correct for the Look-Elsewhere Effect. 

The “Expected” (dashed) curve gives the median p0 under 
assumption of the SM Higgs (µ = 1) at each mH. 

ATLAS, Phys. Lett. B 716 (2012) 1-29 

The blue band gives the 
width of the distribution 
(±1σ) of significances 
under assumption of the 
SM Higgs. 
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Return to interval estimation 
Suppose a model contains a parameter µ; we want to know which 
values are consistent with the data and which are disfavoured. 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The probability that the true value of µ will be rejected is 
 not greater than α, so by construction the confidence interval  
 will contain the true value of µ with probability ≥  1 – α. 

The interval depends on the choice of the test (critical region). 

If the test is formulated in terms of a p-value, pµ, then the  
confidence interval represents those values of µ for which pµ > α. 

To find the end points of the interval, set pµ = α and solve for µ. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ one can use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Monte Carlo test of asymptotic formulae 
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 
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Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Increases “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 
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Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 
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How to read the green and yellow limit plots 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

For every value of mH, find the CLs upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 
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Extra slides 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision tree classifier 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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AdaBoost 
First initialize the training sample T1 using the original 

x1,..., xN                   event data vectors 
y1,..., yN                   true class labels (+1 or -1) 
w1

(1),..., wN
(1)           event weights 

with the weights equal and normalized such that 

Then train the classifier f1(x) (e.g., a decision tree) with a method 
that uses the event weights.  Recall for an event at point  x,  

f1(x) = +1 for x in signal region, -1 in background region           

We will define an iterative procedure that gives a series of 
classifiers f1(x),  f2(x),... 
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Error rate of the kth classifier 
At the kth iteration the classifier fk(x) has an error rate 

where I(X) = 1 if X is true and is zero otherwise. 

Next assign a score to the kth classifier based on its error rate, 
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Updating the event weights 
The classifier at each iterative step is found from an updated  
training sample, in which the weight of event i is modified from  
step k to step k+1 according to 

Here Zk is a normalization factor defined such that the sum of the 
weights over all events is equal to one. 

That is, the weight for event i is increased in the k+1 training 
sample if it was classified incorrectly in step k.  

 Idea is that next time around the classifier should pay more 
 attention to this event and try to get it right. 
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Defining the classifier 
After K boosting iterations, the final classifier is defined as a  
weighted linear combination of the fk(x), 

One can show that the error rate on the training data of the final  
classifier satisfies the bound 

i.e. as long as the εk < ½ (better than random guessing), with 
enough boosting iterations every event in the training sample will 
be classified correctly. 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 


