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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests 

Lecture 2:  Discovery and Limits 
 Comments on multivariate methods (brief) 
 p-values 
 Testing the background-only hypothesis:  discovery 
 Testing signal hypotheses:  setting limits 

Lecture 3:  Systematic uncertainties and further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 The look-elsewhere effect 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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The Bayesian approach 

In Bayesian statistics we can associate a probability with 
a hypothesis, e.g., a parameter value θ. 

        Interpret probability of θ as ‘degree of belief’ (subjective). 

Need to start with ‘prior pdf’ π(θ), this reflects degree  
of belief about θ before doing the experiment. 

        Our experiment has data x, → likelihood function L(x|θ). 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Posterior pdf  p(θ | x) contains all our knowledge about θ. 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ✕       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 



G. Cowan  iSTEP 2016, Beijing / Statistics for Particle Physics / Lecture 3 25 

Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Summary on discovery sensitivity 

For large b, all formulae OK. 

For small b, s/√b and s/√(b+σb
2) overestimate the significance. 

 Could be important in optimization of searches with 
 low background. 

Formula maybe also OK if model is not simple on/off experiment,  
e.g., several background control measurements (checking this). 

Simple formula for expected discovery significance based on 
profile likelihood ratio test and Asimov approximation: 
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Finally 
Three lectures only enough for a brief introduction to: 

 Statistical tests for discovery and limits 
 Multivariate methods 
 Bayesian parameter estimation, MCMC 
 Experimental sensitivity 

No time for many important topics 
 Properties of estimators (bias, variance) 
 Bayesian approach to discovery (Bayes factors) 
 The look-elsewhere effect, etc., etc. 

Final thought:  once the basic formalism is understood, most of the  
work focuses on writing down the likelihood, e.g., P(x|q), and  
including in it enough parameters to adequately describe the data  
(true for both Bayesian and frequentist approaches). 
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Extra slides 
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Choice of test for limits (2) 
In some cases µ = 0 is no longer a relevant alternative and we  
want to try to exclude µ on the grounds that some other measure of  
incompatibility between it and the data exceeds some threshold. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain both high and  low data values.   

       → unified intervals, G. Feldman, R. Cousins,  
 Phys. Rev. D 57, 3873–3889 (1998) 

The Big Debate is whether to use one-sided or unified intervals 
in cases where small (or zero) values of the parameter are relevant 
alternatives.  Professional statisticians have voiced support 
on both sides of the debate.  
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Unified (Feldman-Cousins) intervals 
We can use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   
     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 

Lower edge of interval can be at µ = 0, depending on data. 



36 

Distribution of tµ
Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 



G. Cowan  iSTEP 2016, Beijing / Statistics for Particle Physics / Lecture 3 39 

The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.

The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 
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Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 



Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the also problematic issue of  
testing many signal models (or parameter values) and thus  
excluding some for which one has little or no sensitivity. 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 
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Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 
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Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 
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Why 5 sigma (cont.)? 
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Bayesian model selection (‘discovery’) 
In Bayesian statistics, all information about a hypothesis H given 
data x is encapsulated in the posterior probability, P(H|x).  

If the model contains internal parameters θ, then to find the 
probability of H for any θ, marginalize over θ: 

From Bayes’ theorem, the probability P(H, θ|x) is related to the 
likelihood P(x|H, θ) by 

In the denominator on the right, the sum is over all possible models 
Hi and each is integrated over its internal parameters θi. 
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Bayes factors 
In practice it may not be possible to carry out the sum over 
hypotheses for P(x) because we can’t enumerate all possible 
models and assign to them meaningful prior probabilities. 

The situation is simpler if we compare any pair of models and ask 
to what degree the data favour one over the other.  This can be 
done with a quantity called the Bayes factor. 

First write the joint prior probability as π(H, θ) = π(θ|H) π(H), 
where  π(θ|H) is the conditional  prior probability of θ given H, and 
π(H) is the overall prior of H  (i.e., for any θ).   

Therefore the posterior probability of H is 
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Bayes factors (2) 
Now suppose there are two models Hi and Hj, each with a set of 
internal parameters θi and θj. 

The posterior odds ratio is 

posterior odds prior odds Bayes factor Bij 

That is, the Bayes factor is what the posterior odds would be if we 
would take the overall prior odds to be one.    

Note the Bayes factor is independent of the overall priors, but still  
needs the conditional priors for the models’ internal parameters. 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

The Jeffreys scale, analogous to HEP's 5σ rule: 
 
B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 
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Numerical determination of Bayes factors 
Both numerator and denominator of Bij are of the form 

‘marginal likelihood’ 

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC). 

 Harmonic Mean (and improvements) 
 Importance sampling 
 Parallel tempering (~thermodynamic integration) 
 Nested Samplying (MultiNest), ... 
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Priors for Bayes factors 
Note that for Bayes factors (unlike Bayesian limits), the prior π(θ|H) 
cannot be improper.  If it is, the posterior is only defined up to an 
arbitrary constant, and so the Bayes factor is ill defined  

 Possible exception allowed if both models contain same 
 improper prior;  but having same parameter name (or Greek 
 letter) in both models does not fully justify this step. 

If improper prior is made proper e.g. by a cut-off, the Bayes factor 
will retain a dependence on this cut-off. 

In general or Bayes factors, all priors must reflect “meaningful” 
degrees of uncertainty about the parameters.  
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Harmonic mean estimator 
E.g., consider only one model and write Bayes theorem as: 

π(θ) is normalized to unity so integrate both sides, 

Therefore sample θ from the posterior via MCMC and estimate m  
with one over the average of 1/L (the harmonic mean of L). 

posterior 
expectation 
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Improvements to harmonic mean estimator 
The harmonic mean estimator is numerically very unstable; 
formally infinite variance (!).  Gelfand & Dey propose variant: 

Rearrange Bayes thm; multiply  
both sides by arbitrary pdf f(θ): 

Integrate over θ : 

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ) 

Note harmonic mean estimator is special case f(θ) = π(θ). 
. 
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Importance sampling 
Need pdf f(θ) which we can evaluate at arbitrary θ and also 
sample with MC. 

The marginal likelihood can be written 

Best convergence when f(θ) approximates shape of L(x|θ)π(θ). 

Use for f(θ) e.g. multivariate Gaussian with mean and covariance 
estimated from posterior (e.g. with MINUIT). 
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K. Cranmer/R. Trotta PHYSTAT 2011 
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