Statistical Methods for Particle Physics Project on $H \rightarrow \tau\tau$ and multivariate methods

http://indico.ihep.ac.cn/event/5966/

iSTEP 2016 Tsinghua University, Beijing July 10-20, 2016

G Cowan

Glen Cowan (谷林·科恩) Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

iSTEP 2016, Be

Extension of TMVA tutorial

The H $\rightarrow \tau\tau$ Group Project is an extension of the TMVA tutorial.

In the tutorial, we looked at "toy" data where each event had 3 measured variables (x,y,z).

In the H $\rightarrow \tau\tau$ project, we use 800K fully simulated ATLAS events: signal: H $\rightarrow \tau\tau$

background: $Z \rightarrow \tau \tau$ and ttbar

Each event is characterized by 30 kinematic variables

The goals of the project are to

1) define a multivariate classifier (MLP, BDT SVM,...)

to separate signal from background;

2) define a search region based on the classifier and determine the expected discovery significance for L = 20 fb⁻¹;

3) If time permits, extend the analysis to multiple bins.

G. Cowan

The Higgs Machine Learning Challenge

The data are from a competition organized by ATLAS Physicists and Computer Scientists on kaggle.com from May to September 2014. Information can be found

opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014

800k simulated ATLAS events for signal (H $\rightarrow \tau\tau$) and background (ttbar and Z $\rightarrow \tau\tau$) now publicly available.

Each event characterized by 30 kinematic variables and a weight. Weights defined so that their sum gives expected number of events for 20 fb⁻¹.

Some code using TMVA is here (download and unpack as usual with tar -xvf):

www.pp.rhul.ac.uk/~cowan/higgsml/tmvaHiggsML.tar

The signal process: Higgs $\rightarrow \tau^+ \tau^-$

ATLAS Monte Carlo Data

ASCII csv file converted here to root format with mixture of Higgs to $\tau\tau$ signal and corresponding background, from official GEANT4 ATLAS simulation:

- 30 variables (derived and "primitive")
- + true class label (signal = 1, background = 0)
- + weight (sum of weights = expected number of events for 20 fb^{-1})

DER_mass_MMC DER_mass_transverse_met_lep DER_mass_vis DER_pt_h DER_deltaeta_jet_jet DER_mass_jet_jet DER_prodeta_jet_jet DER_deltar_tau_lep DER_pt_tot DER_sum_pt DER_pt_ratio_lep_tau DER_met_phi_centrality DER_lep_eta_centrality PRI_tau_pt PRI_tau_eta PRI_tau_phi PRI_lep_pt PRI_lep_eta PRI_lep_phi PRI_lep_phi PRI_met PRI_met_phi PRI_met_sumet PRI_jet_num (0,1,2,3, capped at 3) PRI_jet_leading_pt PRI_jet_leading_eta PRI_jet_leading_phi PRI_jet_subleading_pt PRI_jet_subleading_eta PRI_jet_subleading_phi PRI_jet_all_pt

G. Cowan

Extension of TMVA Project

For the TMVA Project, you defined a test statistic *t* to separate between signal and background events.

You selected events with $t > t_{cut}$, calculated *s* and *b*, and estimated the expected discovery significance.

This is OK for a start, but does not use all of the available information from each event's value of the statistic *t*.

Binned analysis

Choose some number of bins (\sim 20) for the histogram of the test statistic. In bin *i*, find the expected numbers of signal/background:

$$s_i = \sigma_s L P(t \in bin \ i|s)$$
 $b_i = \sigma_b L P(t \in bin \ i|b)$

Likelihood function for strength parameter μ with data $n_1, ..., n_N$

$$L(\mu) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i)^{n_i}}{n_i!} e^{-(\mu s_i + b_i)}$$

Statistic for test of $\mu = 0$:

G. Cowan

$$q_0 = \begin{cases} -2\ln(L(0)/L(\hat{\mu})) & \hat{\mu} \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(Asimov Paper: CCGV EPJC 71 (2011) 1554; arXiv:1007.1727)

Discovery sensitivity

First one should (if there is time) write a toy Monte Carlo program and generate data sets $(n_1, ..., n_N)$ following the $\mu = 0$ hypothesis, i.e., $n_i \sim \text{Poisson}(b_i)$ for the i = 1, ..., N bins of the histogram.

This can be done using the random number generator TRandom3 (see generateData.cc for an example and use ran->Poisson(bi).)

From each data set $(n_1, ..., n_N)$, evaluate q_0 and enter into a histogram. Repeat for at least 10⁷ simulated experiments.

You should see that the distribution of q_0 follows the asymptotic "half-chi-square" form.

Hints for computing q_0

You should first show that $\ln L(\mu)$ can be written

$$\ln L(\mu) = \sum_{i=1}^{N} \left[n_i \ln(\mu s_i + b_i) - (\mu s_i + b_i) \right] + C$$

where C represents terms that do not depend on μ .

Therefore, to find the estimator $\hat{\mu}$, you need to solve

$$\frac{\partial \ln L}{\partial \mu} = \sum_{i=1}^{N} \left[\frac{n_i s_i}{\mu s_i + b_i} - s_i \right] = 0$$

To do this numerically, you can use the routine fitPar.cc (header file fitPar.h). Put fitPar.h in the subdirectory inc and fitPar.cc in analyze. Modify GNUmakefile to have

SOURCES	= analyzeData.cc fitPar.cc
INCLFILES	= Event.h fitPar.h

iSTEP 2016, Beijing / Statistics for Particle Physics / Project

G. Cowan

To plot the histogram and superimpose To "book" (initialize) a histogram:

To fill a value x into the histogram: h->Fill(x);

To display the histogram: h->Draw();

To superimpose $\frac{1}{2}$ times the chi-square distribution curve on the histogram use:

TF1* func = new TF1("func", ScaledChi2, 0., 50., 2); func->SetParameter(0,1.0); // degrees of freedom func->SetParameter(1, 0.5); // scale factor 0.5 func->Draw("same");

You can get the function ScaledChi2.C. from subdirectory tools.

Background-only distribution of q_0 For background-only ($\mu = 0$) toy MC, generate $n_i \sim \text{Poisson}(b_i)$. Large-sample asymptotic formula is "half-chi-square".

G. Cowan

iSTEP 2016, Beijing / Statistics for Particle Physics / Project

Discovery sensitivity

Provided that the asymptotic approximation is valid, we can estimate the discovery significance (significance of test of μ = 0)) from the formula

$$Z = \sqrt{q_0}$$

Median significance of test of background-only hypothesis under assumption of signal+background from "Asimov data set":

$$n_i \rightarrow s_i + b_i$$

You can use the Asimov data set to evaluate q_0 and use this with the formula $Z = \sqrt{q_0}$ to estimate the median discovery significance.

This should give a higher significance that what was obtained from the analysis based on a single cut.