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e Course web page:

http://www.pp.rhul.ac.uk/ cowan/stat _course

e Tentative schedule for 2005:
Mostly Mondays 12:00 to 13:00 and 14:00 to 15:00

(with a few exceptions to be announced).
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Course aims

— Understand role of uncertainty and probability in relating
experiment and theory.

— Understand statistical tools needed for analysis of experimental data.

— Practice using statistics on the computer.

— Learn computing tools for High Energy Physics.

Books

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

see also alephwww.cern.ch/ cowan/stat

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods
in the Physical Sciences, Wiley, 1989

see also hepwww.ph.man.ac.uk/ roger/book.html
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

W. Eadie et al., Statistical Methods in Experimental Physics,
North-Holland, 1971

S. Brandt, Statistical and Computational Methods in Data Analysis,
Springer, New York, 1998
comes with FORTRAN and C program library on CD

S. Eidelman et al., Physics Letters B592, 1 (2004); see also
pdg.1bl.gov.

sections on probability, statistics, Monte Carlo
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Eixercises (almost every week)

Tools (flexible):

C++

ROOT, MINUIT, etc.
gnuplot?

other (777)

non-computer exercises

Half-day tutorial /workshop for HEP PhD students

At a central venue, date to be decided

Assessment

for PhD students: exercises (100%)

for MSc/MSci students: exercises and written exam
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Statistical Data Analysis Course Outline

e Probability. Definition and interpretation, Bayes’ theorem, random
variables, probability density functions, expectation values, transfor-
mation of variables, error propagation.

e Examples of probability functions. Binomial, multinomial, Pois-
son, uniform, exponential, Gaussian, chi-square, Cauchy distributions.

e The Monte Carlo method. Random number generators, the trans-
formation method, the acceptance-rejection method.

o Statistical tests. Significance and power of a test, choice of the
critical region. Constructing test statistics: the Fisher discriminant,
neural networks. Testing goodness-of-fit, x2-test, P-values.

e Parameter estimation: general concepts. Samples, estimators,
bias. Estimators for mean, variance, covariance.

e The method of maximum likelihood. The likelihood function, ML
estimators for parameters of Gaussian and exponential distributions.

Variance of ML estimators, the information inequality, extended ML,
ML with binned data.

e The method of least squares. Relation to maximum likelihood,
linear least squares fit, LS with binned data, testing goodness-of-fit,
combining measurements with least squares.

e Interval estimation. Classical confidence intervals: with Gaussian
distributed estimator, for mean of Poisson variable. Setting limits,
limits near a physical boundary.

e Unfolding. Formulation of the problem: response function and ma-
trix. Inversion of the response matrix, bin-by-bin correction factors.
Regularized unfolding: regularization functions, bias and variance of
estimators, choice of regularization parameter.
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Lecture 1 outline

1. Probability

(a) definition
(b) interpretation
(c) Bayes’ theorem

2. Random variables

(a) probability densities and derived quantities
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Data analysis in particle physics

Ql

q
e \ e Observe N events

\ of a certain type
q

I\

Measure characteristics of each event (angles, event shapes

particle multiplicity, number found for a given / Ldt,...)

Theories (e.g. SM) predict distributions of these properties

up to free parameters, e.g. a, G, My, ag, my, . ..
Some tasks of statistical data analysis:

Estimate the parameters.

Quantify the uncertainty of the parameter estimates.

Test to what extent the predictions of a theory are in agreement

with the data.

There are various elements of uncertainty :

theory is not deterministic,
random measurement errors,

things we could know in principle but don’t,...

— quantify using PROBABILITY
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Definition of probability

Consider a set S with subsets A, B, ...

Forall AC S, P(A) >0 Kolmogorov axioms

P(S)— 1 (1933)

IfANB=0,P(AUB)= P(A)+ P(B)

From these axioms one can derive further properties e.g.
P(A)=1- P(A)
P(AUA)=1
P(()=0
if A C B, then P(A) < P(B)
P(AUB)=P(A)+ P(B)— P(AN B)

Also define conditional probability of A given B (with P(B) # 0) as

P(AN B)
P(A|B) =

P(B)

Subsets A, B independent if P(AN B) = P(A)P(B) .

P(A)P(B)
P(B)

N.B. do not confuse with disjoint subsets, i.e. AN B = (.

If A, B independent, P(A|B) =

= P(A)
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Interpretation of probability

I. Relative frequency

A, B, ... are outcomes of a repeatable experiment,

lim outcome is A

n

(cf. quantum mechanics, particle scattering, radioactive decay, . ..)

II. Subjective probability

A, B,...are hypotheses (statements that are true or false)
P(A) = degree of belief that A is true

— Both interpretations consistent with Kolmogorov axioms
— Data analysis in HEP: frequency interperation often most natural,
but subjective probability has some attractive features, e.g.

more natural treatment of phenomena that are not repeatable:

Systematic errors (same upon repetition of experiment)
The particle in this event was a positron

Nature is supersymmetric

Billionth digit of mis 7

It will rain tomorrow (uncertain future event)

[t rained in Cairo on March 8, 1587 (uncertain past event)
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Frequentist vs. subjective probability

What is P(0.118 < a, < 0.122)7

Frequentist: 0 or 1 (but I don’t know which)
Subjectivist (Bayesian): 68% (statement of knowledge)

i.e. P(0.118 < ay < 0.122) = 0.68 (subjective) means:

my uncertainty that 0.118 < ag < 0.122 is same as uncertainty to

draw white ball out of container of 100 balls, 68 of which are white.

(cf. G. D’Agostini, CERN Yellow Report 99-03, July 1999)

— Calibration by relation to frequency (or symmetry, betting, etc.)

If a large group of Bayesians say things like:

P(Brazil will win 2002 World Cup) = 68%
P(0.118 < ag < 0.122) = 68%
P(Al Gore president in 2001) = 68%

then 68% of these statements should wind up being true.
N.B. Calibration not always feasible, e.g.

P(Ivanov will win chess tournament in Tomsk in 2017) = 777
Attempt to rescue freqency: can P(0.118 < ay < 0.122) = 68% mean,

Consider an ensemble of universes in which Nature assigns different

values of ag; 68% of these will have oy in [0.118,0.122] (777)

Fine ...but this is just a way of phrasing degree of belief.
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Bayes’ theorem

From the definition of conditional probability,

P(ANB) P(BNA)

P(A|B) = P and P(B|A) = P

but P(ANB) = P(BNA), so

P(A|B) = Bayes’ theorem

First published (posthumously) by
the Reverend Thomas Bayes
(1702-1761)

An essay towards solving a problem in the doctrine of chances,
Philos. Trans. R. Soc. 53 (1763) 370.
Reprinted in Biometrika, 45 (1958) 293.

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



T'he law of total probability

Consider a subset B of the sample space S,

B

/
/

BNA;

divided into disjoint subsets A; such that U;A; = .5,
%B:BHS:BH(UZ'AZ'):U@(BHAZ')

— P(B) = %, P(BJA;) P(A)) (law of total probability)

Bayes’ theorem becomes

P(B|A) P(A)

P(A|B) =
A ¥ P(B|A;) P(A;)
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An example using Bayes’ theorem

Suppose the probabilities (for anyone) to have AIDS are:

P(AIDS) = 0.001 < prior probabilities, i.e.
P(no AIDS) = 0.999 before any test carried out

Consider an AIDS test: result is + or —

P(+|AIDS) = 0.98 < probabilities to (in)correctly
P(—|AIDS) = 0.02 identify AIDS infected person
P(+4|no AIDS) = 0.03 < probabilities to (in)correctly
P(—|no AIDS) = 0.97 identify person without AIDS

Suppose your result is +. How worried should you be?

P(+|AIDS) P(AIDS)

P(AIDS|+) =
P(+|AIDS) P(AIDS) + P(+[no AIDS) P(no AIDS)

0.98 x 0.001

0.98 x 0.001 + 0.03 x 0.999

= 0.032 <+ posterior probability

i.e. you're probably OK!

Your viewpoint: my degree of belief that I have AIDS is 3.2%
Your doctor’s viewpoint: 3.2% of people like this guy will have AIDS
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Random variables

Suppose outcome of experiment is x (label for element of sample space)
P(z found in [z, z + dz|) = f(z)dx

— f(x) = probability density function (pdf)

/ > f(:l?) dr =1 (x must be somewhere)

—0o0

F (x) = /_xoo f(x') dr'  + cumulative distribution function

£ x !
— (a) LL
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For discrete case:

fi = P(z;)
%:fizl

F(z)= ¥ P(z;)

T, <x
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Histograms

pdf = histogram with:

infinite data sample

zero bin width

normalized to unit area
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Multivariate case

Outcome characterized by > 1 quantity, e.g.  and y

10 T T T
y ___eventA
8 B . . ' T
6 . : -
4 . _
event B
dy
2 -
O | | |
0 2 4 6 8 10

P(ANB) = f(x,y)dzdy
— f(x, y) = joint pdf

//f(x,y)d:cdyzl
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Marginal distributions

Projections of joint pdf (scatter plot)

f:c(x) — /f(xay) dy

fy(y) = [ f(z,y)dz

0.3

0.2

0.1

— fz(x), f,(y) = marginal pdfs

onto T, Y axes:

(b)

10
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Conditional pdt

Recall conditional probability:

P(ANB) f(x,y)dzdy
PO "pa) T L

f(z,y)

Define h(y|z) =

conditional pdfs

flz,y)
g(zly) =
Xy %0
10 ! : ‘% : R 05
Y @ | (b)
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X y

Bayes’ theorem becomes

 hiyl2) fulo)
glely) === F 1)

Recall A, B independent if P(AN B) = P(A)P(B)

= Z, Y independent if f(:C, y) = fx(x)fy(y)
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Lecture 1 summary

1. Probability

(a) definition: Kolmogorov axioms + conditional probability
(b) interpretation: frequency or degree of belief

(c) Bayes’ theorem

2. Random variables

(a) probability density functions (pdf), e.g. f(x)

(b) cumulative distribution functions, F'(x / fl(x
(c) joint pdf, e.g. f(z,y)

(d) marginal pdf, e.g. fo(x) = [ f(x,y)d

(e) conditional pdf, e.g. g(az|y) = f(x, y)/fy(y)
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