Lecture 10 outline

Unfolding

1. Mathematical formulation, response function (matrix)
Inverting the response matrix

Correction factors

=~ W

Regularized unfolding

(a) Tikhonov

(b) MaxEnt

5. Variance and bias of the estimators

6. Choice of the regularization parameter

7. Some examples

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Formulation of the unfolding problem

Consider random variable . Goal: determine pdf f(y)
If parametrization f(y; 5) known,

maximum likelihood — 5

If no parametrization available, construct histogram:
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20

bin j

Pi= hin; fWdy j=1,.... M

Mhj = HUtot Pj <— the ‘true histogram’

The goal: construct estimators for the p; (or p;).
— number of parameters = number of bins, M

The problem: Yy cannot be measured without error.
— migration of entries between bins

— f(y) is ‘smeared out’, peaks broadened
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Response matrix

Effect of measurement errors: 4y = true value

X = observed value

fmeas(x) — /R(x|y) ftrue(y) dy

1 discretize

M )
I/Z':.Zle'j,uj, 1=1,...,N
j:
/! T N

observed response true histogram

histogram matrix

(expec. val.)
R;; = P(observed in bin % | true value in bin j)

The data: . = (nl, e ,TLN), where 1/; = E[nz]

N.B. [i, U constants, 77 subject to statistical fluctuations.
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Efficiency, background

Sometimes an event goes undetected,

N N ) )
> Ry =X P (observed in bin % | true value in bin )
1=1 1=1

=P (observed anywhere | true value in bin 7 )

= ¢€; (efficiency)

N.B. €; depends on bin J of true histogram.
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Sometimes we observe something when no true event occurred,
M
v = X R+ B
]:

0; = expected number of background events in observed histogram.

—_—
For now, assume (3 is known.
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Summary of ingredients

M
‘true’ histogram: [ = (Ml; e ,,LLM) y Utot = '21 1
]:
probabilities: p = (pl, e ,pM) = ﬁ/ﬂtot
expectation values for observed histogram: ¥ = (1/1, cee I/N)
observed histogram: 77 = (nl, N () N)
response matrix: Rz'j =P (observed in bin 7 | true value in bin 7 )
N
efficiencies: €; = > Rz'j
1=1

—

expected background: 3 = (51, ., BN )

These are related by:

E[f] =7 = Rii + G

To find estimators for [i, we need probability law, e.g.

n;
P(n;;v;) = —e™" (Poisson),

or covariance matrix,
V;j — COV[niv nj];

in order to construct likelihood function or X2.

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Why unfold?

Often unfolding not needed, e.g. when

comparing to prediction of existing theory, better to
‘fold’” theory with detector response,
i.e. include detector effects in its prediction,
compare this with uncorrected (‘raw’) data 72.

— simpler, more robust.

But, “folding’ theory with detector effects requires response matrix,
usually this knowledge not retained after publication of result.
Unfolded distribution can be compared directly to:
predictions of theories,
unfolded results from other experiments.
Usually unfolded result is more useful, since new theories
may be invented when response matrix is long gone.
In HEP often unfold:
structure functions F5 (51:, Q2>,
T spectral functions (hadronic mass distributions),
hadronic event-shape distributions,

particle multiplicity distributions.
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Inverting the response matrix

—

Assume UV = Rji + E can be inverted: [I = R_l(ﬁ =)

n;
v, _.
Suppose data are Poisson: P (nz-; l/z-) = —¢e "
o N
log L() = 3 (nslogvi — )
1=
ML estimatoris 7 =1 — [l = R_l(ﬁ —0) .
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Catastrophic failure (?7!)
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What went wrong?

800

Suppose ﬁ really -

600 F M S

had fine structure: -
400 |

IL_[ _) 200
0 025 05 o075 i
y
800
800 | Applying R washes this out,
400 T but leaves residual structure.
200 r — e
—v=Ri

Applying R 'tov puts the fine structure back: [t = R~ 'D.
But we don’t have I, only 72.

70 has small bumps due to statistical fluctuations.
— R™! “thinks’ this is residual of original fine structure,

[ = R7'7 winds up getting huge ‘fine structure’.
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ML solution revisited

Elji] = R_l(E[’ﬁ:] — E) = (I — unbiased!

Compute variance of estimators,

M=

Uij = covliui, fuj] = 3 1(3_1)% (R™)j1 covlng,

N
= X (R ) (B e v

Recall RCF bound for unbiased estimators,

0?log L
Opr O

R Ry

1 V;

U Y = —E

M=

?

Inverting gives
N oy pely
Uij= X (B )i (B7)ji v

— ML estimator has minimum variance among unbiased estimators.
But this variance was huge!

— to reduce variance, we must introduce some bias.

Strategy: accept small bias (systematic error) in exchange for large

reduction in variance (statistical error).

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Correction factor method

Use equal binning for ,u, U and take [ = ( ﬁz) where
MC
C; = ﬁ (correction factor)
1

I/ZM C and ,ui-\/[c from Monte Carlo simulation (no background).

Usj = cov|fi, fu;] = C’f cov|ng, n]

Usually C; & O(1), so variances don’t blow up.

But the bias b; = F[f1;] — p; is

MC
b, = b K e , Where V — [
] VZI\/[C VZSIg 7 1

Need to include systematic error due to MC dependence.
) [ -MC
N.B. bias tends to pull 4 towards [
— hard to test models.
Not too bad if bin width > several times resolution.

Often used for distributions of event-shape variables.
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Example of correction factors in e"e™ — hadrons

The correction factors:

~
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The unfolded distribution compared to model predictions:
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Regularized unfolding

Consider ‘reasonable’ estimators such that for some A log L,
log L(fi) > log L. — Alog L

Out of these estimators, choose the ‘smoothest’, by maximizing
O(fi) = o log L) + S(f),

S (ﬁ) = regularization function (measure of smoothness),

« = regularization parameter (choose to give desired A log L)

N
In addition require > 1; = > Rz-j,uj = MNiot, 1-6. Maximize
i=1 i

S . . N
P, V) = a log L(R) + S(E) + A |mas — % v

where ) is a Lagrange multiplier,

N
390/(?)\ =0 '21 V; = Mhtot.

a = () gives smoothest solution (ignores datal),

@ — 00 gives ML solution (variance too large).

We need:  regularization function S (ﬁ),

a prescription for setting .

Goodness of resulting estimators judged by their bias and variance.
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Tikhonov regularization

Take measure of smoothness = mean square of kth derivative,

_ (dkftrue( ))

2

S| firue(y)] = dy , where k = 1,2, ...

Often take K = 2, — S & mean squared curvature.

For histogram this becomes (e.g. for k = 2),

M-=2
S() == T (=i + 211 — piv2)’

1=1
N.B. 2nd derivative not well defined for first and last bins.

If we use Tikhonov (k = 2) with log L = —%X27

— 84 — —
(i1, ) = =X (/1) + S(i) quadratic in pu;,

— setting derivatives of ¢ equal to zero gives linear equations.

Several programs available for use in HEP:

RUN, Blobel
SVD, Hocker and Kartvelishvili

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Regularization function based on entropy (MaxEnt)

Shannon entropy of a set of probabilities is
M
H =— % pilogp
1=

All p; equal — maximum entropy (maximum smoothness)
One p; = 1, all others = 0 — minimum entropy

Use entropy as regularization function,

S S M [ i
S =H =— ¥ lo
(,u) (,u) i=1 Mot 5 ot

X log(number of ways to arrange [iyot entries in M bins)

Sometimes motivated by Bayesian statistics,
S(ft) — prior pdf for fi (?)
Here stay with classical approach:
goodness of estimator judged by bias, variance.

N.B. Entropy does not depend on order of bins.
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Variance and bias of ﬁ

—

In general, the equations determining [ (n) are nonlinear.

Expand ﬁ(ﬁ) about 77} (observed data set),

(7)) ~ [, — AT B(7 — figps)

AZ]:<%Z§L)\:_17 7/:177M7]:M_|_17

Bz’j =

Use error propagation to get covariance Uij — COV[,&Z-, ﬂj],
U=CVC" where C = A_lB,

and estimators for the bias, b= F [,LALZ] — W,

A N Op
b; = Cii(D: — ;) =
jgl (Uj — ny) j; on,

(D — ny),

Whereli’:R/ij—l—ﬁ_). (NBIi’#ﬁ )
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Choosing the regularization parameter

o = 0 — [ maximally smooth (ignores data).
a — 00 — ML solution (no bias, very large variance).
Possible criteria for best trade-off between bias and variance:

Minimize mean squared error,

1 M ~
MSE = Mzgl (Um + b?) , or
1 i+ b
MSE' = — % U—+bz

Mi=1
Or look at changes in X2 from unregularized (ML) solution,
Ax? =2AlogL = N, or
A =0 —-—aR)TRCVYRC) (b—7) =1.
Or require that bias be consistent with zero to within its own error,

72
b; _
=1 I/Vu

M where VVZ']' — COV[[A)Z', [A)j]

M=

Xi =

i.e. if bias significantly different from zero, we would subtract it;

— equivalent to going to smaller A log L or larger o (less bias).
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Examples with Tikhonov regularization (k =

2)
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N.B. solution not always positive.
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Examples with MaxEnt regularization
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A MaxEnt example with image reconstruction (Newton)

(b)

MaxEnt often used in astronomical image reconstruction,

only small bias against point sources (peaks),

light intensity
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pixel number (row 36)

easy to generalize to two (or more) dimensions.

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures




Lecture 10 summary

Unfolding

1. Mathematical formulation:

true histogram: i = (p1, ..., par)

data: 7 = (n1,...,ny)
expectation values of 7: U = (v4,...,vy)
ji=Ri+j

Goal: construct estimators for /i

2. Inverting the response matrix: huge oscillations (large variance)
but zero bias and minimum variance among unbiased solutions.

3. Correction factors: quick and simple.
4. Regularized unfolding:

Tikhonov: smoothness from mean square kth derivative.

MaxEnt: smoothness from entropy H = —3_ p;log p;.
7
5. Variance and bias of the estimators: based on linearized
approximation to solution.

6. Choice of the regularization parameter: no clear winner
(but x7 = M my favorite).

7. Examples: anything where structure smeared out, detector response
is known, no parametrization of true distribution available.
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