Lecture 2 outline

1. Probability and random variables (continued)

(a) Functions of random variables
(b) Expectation values

(c) Error propagation

2. Examples of probability functions

Binomial
Multinomial
Poisson

Uniform

central limit theorem

multivariate Gaussian
(g) Chi-square
(h) Cauchy (Breit-Wigner)
(i) Landau

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Functions of random variables

A function of a random variable

1s itself a random variable

Suppose z follows pdf f(z), consider a function a(z).
What is the pdf g(a)?
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gla)da = [,o f(z)dx

dS = region of x space for which a is in [a, a + da]

g(a)da = /xa:(ic;qtda) f(x')d:c" — gzg;>+|gll_ﬁ|da f(x’)dx’
d
= g(a) = f(e(a)) |
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Functions without unique nverse

If inverse of a(z) not unique, include all dz intervals in d.S

which correspond to da
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Example: @ = 2°, = = ++v/a, dr=+—

2v/a
gla)da = [,¢ f(z)dx
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Functions of more than one random variable

Consider r.v.s £ = (21, ..., Z,) and a function a(%).
glahdd = [ ... [ ¢ f(z1,...,2n)d2; ... dzxy,
dS = region of £—space between (hyper)surfaces defined by
a(f) =d, a(Z) =d + dd'.

Example: r.v.s z,y > 0 follow joint pdf f(z,y),

consider function z = xy. What is g(z)?
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More on transtormation of variables

Consider random vector & = (xl, e ,xn) with joint pdf f(f)
Form 7 linearly independent functions: gj(fl_f) = (y1 (f), Cee yn(f)),
for which the inverse functions :Cl(:lj), ceey xn(g) exist.

The joint pdf of % is then

9(y) = |J1f(Z)

where J is the Jacobian determinant,
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For e.g. gl(yl), integrate g(gj) over the unwanted variables.
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bkxpectation values

Consider continuous r.v. Z with pdf f(x).

Define the expectation (mean) value as:
Elx] = [z f(z)dx

NB. E [:B] is not a function of o , rather a parameter of f(a:)

Notation (often): F|x| = u

For discrete variable, £/ [:C] =Yz P (:L‘z)
1

For a function y(x) with pdf g(y),

Elyl=[ygly)dy = [y(x) f(x)dx (equivalent)

Variance:

Notation: V[QZ] =0
Standard deviation: 0 = V02  (same dimension as x)
/

Algebraic moments: [ [:Cn] = W, (,ul - ,LL).

Central moments: F/ [(x — ,u)"} = ln (0 - ,ug)
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(Covariance and correlation

Define the covariance cov|x, y| (also use matrix notation ny) as

cov|z,y| = El(z — p)(y — py)] = Elzy] — popy

Correlation coefficient (dimensionless) defined as

B cov|x, Y|

oy ————————, —1<py <1
Py 00y = Pry =

p=0.75 . [ | p=—0.75
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If z, y, independent, i.e. f(:E, y) = fx(x)fy(y), then
Elzy] = [ [y f(z,y) dedy = popy

= cov|z,y] =0 z and y ‘uncorrelated’

N.B. converse not always true.
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brror propagation

Suppose T = (:Cl, Ceey a:n) follows some joint pdf f(f)

f(f) maybe not fully known, but suppose we have covariances
Vij = cov|z;, ;]

and the means ji = F/|Z]  (in practice only estimates).

Now consider a function y(f)

What is the variance V [y] = F [yz] — (F [y])2 ?

Expand y(Z) to 1st order in a Taylor series about [i :

(xz' — Mz‘)

7=

y(@) = y(i) + X

8562'
We need F'|y| and E[yQ]. These are:

Ely(Z)| =~ y(fi) since E|x; — ;] =0, and

— — — n 8
Bly*(®)] ~ y*(i) +2y(i) - £ | 57| Elei -
- tlr=p
n [0y n | Oy
. n 8y (9y
— a2 i .
BAR +z',j2:1 Ox; 0x; f:ﬁVz

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Error propagation (continued)

Putting this together gives the variance of y(f),

Oy 9y
8332' (9513]'

2 n
4,J=1

Q
2

Vij

- =
TrT=

If the x; are uncorrelated, i.e. Vl-j = UZ-2 5@’]-, then this becomes

0
0'2 ~ y 0'.2
(9@
Similar for set of m functions, g(f) = (11(Z), ..., ym(T)),
n 3% (9yz
Uk = cov|yx, 2 V.
kl Yk, Y] = 31’2 (%] . ij
: . . T 8yz
or In matrix notation, U=AV A , Where Aij — 87
£Cj o =

These are the ‘error propagation’ formulae, i.e. the covariances,
. . . —
which summarize the ‘errors’ in measurements of I, are propagated

to the new quantities /().

Limitations: exact only if y( ) linear. Approximation breaks down

if function nonlinear over a region comparable in size to the ;.

N.B. We have said nothing about the exact pdf of the x;,

e.g. it doesn’t have to be Gaussian.
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bError propagation: some special cases

Yy=x1+ Iy

2 2

= 05 = 0] + 05 + 2cov|xy, T3]

Y= T1T2
2 2 2
o ) o COV|T1, T2
= F="14 242 71,7
Y L1 L3 T1X2

That is, if the o; are uncorrelated:
add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio).

But correlations can change this completely!

Consider e.g. Yy = 1 — T2, with

M1 = U2 = 10, 01 — 09 — 1, and P = COV[.CIZ1,1132] = 0.
0109

Then Ely] = p1 — po = 0 and V]y] = 12 +1%2=2,
ie. oy, =14.

Now suppose p = 1. Then
Viy =124+1*-2=0, ieo,=0.

i.e. for p — 1, error in difference — 0.
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Binomial distribution

Consider /V independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,

probability of success on any given trial is p.

Define discrete r.v. 1 = number of successes (0 <n<N )

Probability of a specific outcome (in order), e.g. ssfsf is

pp(1—p)p(1=p) = p"(1=p)"™"
N
But order not important; there are nl(N —n)!

ways (permutations) to get 1 successes in [V trials.

The binomial distribution is thus

N!

- N _ n(1 — N—n
f(n; N, p) AN —i” (1-p)
7N
random variable  parameters
We can show
N N!
’ n 1_ N—n — 1
ngo n!(N — n)!p (=P

as required.
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Binomial distribution (continued)

For expectation value and variance we obtain:
N
Eln] = ¥ nf(n;N,p) = Np
Vln] = E[n*] - (E[n])> = Np(1 - p)

Recall &/ [n], V[n] are not random variables, but are constants which

depend on the true (and possibly unknown) parameters NV and p.
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S o2 | p=05 | S o2 | p=06 |
) ST ) T,
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n n

Example: observe /N decays of W¥,
number 72 which are W — v is a binomial r.v.,

P = branching ratio
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Multinomial distribution

Like binomial but now 1M outcomes instead of two, probabilities are

S .om
P = (ph s 7pm) with Zglpz = 1.

For /N trials, we want the probability to obtain:
N1 of outcome 1,

N9 of outcome 2,

Ny, of outcome M.

This is the multinomial distribution for 77 = (nl, ceey nm):

N
nilns!...n

f(7i; N,p) = PSP
!

Consider outcome ¢ as ‘success’, all else as failure.

= all n; individually are binomial with parameters [V, p;.
E[TLZ] = Np;, V[nz] = sz(l — pi) for all 2.
One can also find the covariance to be

Vi; = —Npip;, (1 # j).

Example: 77 = (nl, . ,nm) represents histogram with 17 bins,

N total entries, all entries independent.
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Poisson distribution

Consider binomial 7 in the limit

N — o0,
p— 0,
Eln|=Np —v.
We can show that 1 then follows the Poisson distribution:
I/n
f(n,v) = —e’ (0<n< )
!
En|=v
Vin|=v
= 04
i:; v=2
T o2t )l
; WMHHM
0 5 10 15 20
= 04
E\:: v=5
0.2 i
o Lol | H H Ey
0 5 10 15 20
= 04
i:; v=10
T o2t )l
0 HHHHHHHHHHHHH
0 5 10 15 20

n

Example: number of scattering events 12 with cross section &

found for a fixed integrated luminosity, where v = o / Ldt .
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Uniform distribution

Consider a continuous r.v. £ with —o0 < < Q.

The uniform distribution is defined by

s a<z<p

flz;a,8) =177°

0 otherwise

Ele] = [ 2" de = Ya +B)

5 1
Viel = [lo = Yo+ B 51— do = 4(8—a)
g a :
08 n 1
| (o
0 1 2 3 «

N.B. For any r.v.  with cumulative distribution £’ (x),

y = F(x) is uniform in [0, 1].

Example: for 7 — Y7, E7 is uniform in [Emim Emax}, with

Emin — %Eﬂ'(]— — B); Emax —

sER(1+8)
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bExponential distribution

The exponential pdf for the continuous r.v. Z is defined by

_!
RS

e e dy = £

fl@; &)= (>0

!
§

Elzx] = "z

Example: proper decay time ¢ of an unstable particle,

1
f(t;T) = Ze T (T = mean life time)
T

Lack of memory (unique to exponential pdf):

[t —tolt > to) = f(t)
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(zaussian distribution

The Gaussian (or normal) pdf for the continuous r.v. Z is defined by

flz;p,0%) = #GXp (—(x _ u)z)

V2mo? 202
Elx] = p N.B. Often 1, 02 denote
mean, variance of any r.v.,
V[QZ] = o2 not necessarily Gaussian.
’6\ T T T T T
;:' 0.6 — p=0,0=1
— . --- u=0, 0=2
T p=1, o=1
04 A
0.2 | -

Special case: 1t = 0, 0> =1  (‘standard Gaussian’)

o) = T 0w) = [ pla) do

If 1 is Gaussian with p, 027 then T — Yy

o follows ().
o

Examples: (almost) anything which is a sum of many random

contributions, often the case for measurement errors.
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I'he central limit theorem

For n independent r.v.s ; with finite variances 02-2, otherwise

n
arbitrary pdfs, in limit 7 — 00, ¥y = > x; is a Gaussian r.v.

1=1
Ely = 3
v= i=1 Hi (As for all sums of
n independent r.v.s.)
Vlyl = X o;

For proof see e.g. GDC Ch. 10 using characteristic functions.

For finite 1, theorem is valid to the extent that sum is not

dominated by one (or few) terms.
Good example: velocity component v, of air molecules.

OK example: total deflection due to multiple Coulomb scattering.

(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin gas layer.

(Rare collisions make up large fraction of energy loss, cf. Landau pdf.)
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Multivariate (Gaussian distribution

Multivariate Gaussian pdf for the vector r.v. & = (xl, e ,xn):

1 Lo om0 -
(27T)n/2|V|1/2 eXp __(x_lu) V (x_lu)

F(@ V) = :

T : ,LT are column vectors, fT, ﬁT are transpose (row) vectors.
Elx] =
COV[JIZ', 517]'} — Vij

For n = 2, this is

f(T1, T p, p2, 01,09, p) = 2

X exp {—2(1;2) [(ma—lm)? + (xQ_J—;ﬂy —2p <3710—1M1) (3:20_2#2”} 7

where p = COV[xl, CL’Q] / (0102) is the correlation coefficient.
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Chi-square (x~) distribution

The chi-square pdf for the continuous r.v. 2 is defined by

1
. _ n/2—1_-—z/2

n = 1,2,... = ‘number of degrees of freedom’ (dof)

20

. . . . 2
For independent Gaussian ;, 2 = 1, ..., n, means [;, variances 07,

2
Li — [y
z:Z( 2#)

n
1=1 O-Z

follows x? distribution with 1 dof.

Or for multivariate Gaussian x; with covariance matrix V;-j,
= —\T -1 /- — 9
zZ = (33 — ,u) V (QC — ,LL) follows x* pdf.

Example: goodness-of-fit test variable, especially in conjunction

with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Cauchy pdf for the continuous r.v.  is defined by

1
Cor 1+ 2

/(@)
This is a special case of the Breit-Wigner pdf,

1 /2
™ F2/4—|— (37 — 56'0)27

f(xa F,CC()) —

where parameters £y, I’ = mass, width of resonance.

T 08 ; : , , .
X Xy=0, =1
g S XF=2,T=1 i
0.6 r Iy .
) [SC ] — not well defined S Xg=0, T=2 X
!: ‘l
|
04 r | |l |
— P
V I:x] — & (I’ \\
Y, \\
0.2 B - \ -
0 ey =~ T T iy
4 2 0 2 4

Lo = mode (most probable value)

[' = full width at half maximum

Example: mass of resonance particle, e.g. p, K™, qbo, C.

[' = decay rate (inverse of mean lifetime)
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Landau distribution

For a charged particle with 8 = v / C traversing a layer of matter
of thickness d, the energy loss /A follows the Landau pdf:

F(A:8) = 2¢(A),

]. o0 .
¢(N) = — ;" exp(—ulogu — Au) sin7u du,
T

1
§ ¢
¢ = 2rNaetz?ps Z d ) I? GXP<52)
T A B ¢ T am.py

(See L. Landau, J. Phys. USSR 8 (1944) 201;
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.)

4

> (@
2 5L — [B=0.4
Long ‘Landau tail’ - p=06
ong andau tal a o | - [B=0.95
- g 3=0.999
—> all moments diverge R
0 /. N Tl P
0 1 2 3 4

Mode (most probable value)

By (keV)

sensitive to J3;

—> particle i.d.
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Lecture 2 summary

1. Probability and random variables (continued)

(a) Functions of r.v.s:
a function of a random variable is a random variable,
several techniques available to find pdf of function.
(b) Error propagation:
technique to find variance of a function,

based on 1st order Taylor expansion,

only exact for linear function.

2. Examples of probability functions

n
Yy = > I; becomes Gaussian for large n

valid Zagllong as sum not dominated by one or few terms
(g) Multivariate Gaussian: joint pdf for ;, ¢ = 1,...,n,
all individually Gaussian, cov|x;, ;] = Vi;
(h) Chi-square: used in goodness-of-fit tests

(i) Cauchy (Breit-Wigner): mass of resonance particle, vari-
ance infinite

(j) Landau: ionization energy loss, all moments infinite
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