Lecture 3 outline

- 1. The Monte Carlo method
- 2. Random number generators
- 3. The transformation method
- 4. The acceptance-rejection method
- 5. Accuracy of MC
- 6. Uses in particle physics

The Monte Carlo method

What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.

The usual steps:

- (1) Generate sequence r_1, r_2, \ldots, r_m uniform in [0, 1].
- (2) Use this to produce another sequence x_1, x_2, \ldots, x_n distributed according to some pdf f(x) in which we're interested. (N.B. x can be a vector.)
- (3) Use the x values to estimate some property of f(x), e.g. fraction of x values with $a \le x \le b$ gives $\int_a^b f(x) dx$.
- \Rightarrow MC calculation = integration (at least formally)

Usually trivial for 1-d: $\int_a^b f(x) dx$ obtainable by other methods.

MC more powerful for multidimensional integrals.

MC x values = 'simulated data'

 \rightarrow use for testing e.g. statistical procedures.

Random number generators

Goal: uniformly distributed values in [0, 1].

Toss coin for e.g. 32 bit number ... (too tiring).

⇒ 'random number generator'

= computer algorithm to generate r_1, r_2, \ldots, r_n .

Example: the multiplicative linear congruential generator (MLCG)

$$n_{i+1} = (an_i) \operatorname{mod} m$$
 , where $n_i = \operatorname{integer}$ $a = \operatorname{multiplier}$ $m = \operatorname{modulus}$ $n_0 = \operatorname{seed}$

N.B. mod = modulus (remainder), e.g. $27 \mod 5 = 2$.

The n_i follow periodic sequence in [1, m-1].

Example (cf. Brandt): a = 3, m = 7, $n_0 = 1$:

$$n_1 = (3 \cdot 1) \mod 7 = 3$$

 $n_2 = (3 \cdot 3) \mod 7 = 2$

$$n_3 = (3 \cdot 2) \operatorname{mod} 7 = 6$$

$$n_3 = (3 \cdot 2) \mod r = 0$$

$$n_4 = (3 \cdot 6) \operatorname{mod} 7 = 4$$

$$n_5 = (3 \cdot 4) \operatorname{mod} 7 = 5$$

 $n_6 = (3 \cdot 5) \mod 7 = 1 \leftarrow \text{sequence repeats!}$

Choose a, m, to obtain long period (maximum = m-1).

Random number generators (continued)

 $r_i = \frac{n_i}{m}$ are in [0, 1] (0 and 1 excluded), but are they 'random'????

Choose a, m, so that the r_i pass various tests of randomness:

Uniform distribution in [0, 1]

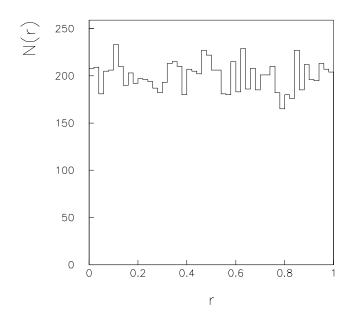
All pairs independent (no correlations)

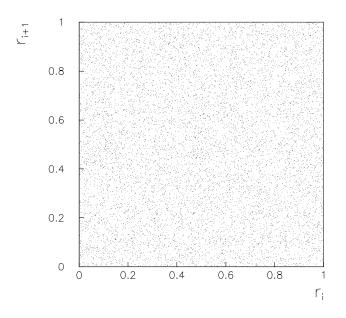
e.g. L'Ecuyer, Commun. ACM 31 (1988) 742 suggests

$$a = 40692$$

m = 2147483399

Test with 10000 generated values:





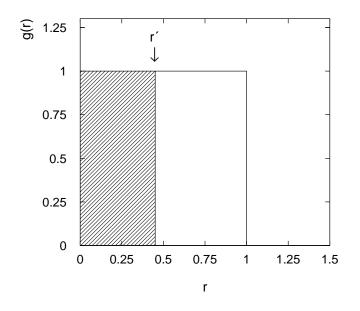
Far better algorithms available e.g. RANMAR, period $\approx 2 \times 10^{43}$. For more info see e.g.

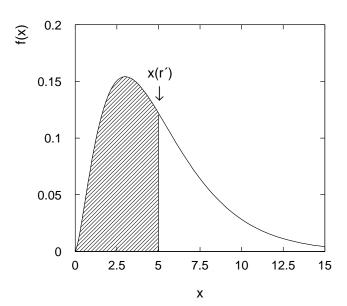
F. James, Comput. Phys. Commun. 60 (1990) 111; Brandt, chapter 4.

```
program TEST_RANMAR
      implicit
                     NONE
c Needed for HBOOK routines
      integer
                     hsize
                      (hsize = 100000)
      parameter
      integer
                     hmemor (hsize)
      common /pawc/ hmemor
c Local variables
      character*80 outfile
      integer
                     i, icycle, istat
                     NTOTIN, NTO2IN, IJKLIN
      integer
                     rvec(1) ! vector of random nos. (here only 1)
      real
c Initialize HBOOK, open histogram file, book histograms, set seed.
      call HLIMIT (hsize)
      outfile = 'test_ranmar.his'
      call HROPEN (20, 'histog', outfile, 'N', 1024, istat)
      call HBOOK1 (1, 'uniform dist', 100, 0., 1., 0.)
      write (*, *) 'Enter initial seed between 0 and 900 000 000'
     read (*, *) IJKLIN
     NTOTIN = O
      NTO2IN = 0
      call RMARIN(IJKLIN,NTOTIN,NTO2IN) ! sets initial seed
c Generate 10000 values, enter into histogram, then store histogram.
     do i = 1, 10000
        call RANMAR (rvec, 1)
        call HF1 (1, rvec(1), 1.)
      end do
      call HROUT (0, icycle, '')
      call HREND ('histog')
      stop
      END
```

The transformation method

Given r_1, r_2, \ldots, r_n uniform in [0, 1], find x_1, x_2, \ldots, x_n which follow f(x) by finding a suitable transformation x(r).





Require: $P(r \le r') = P(x \le x(r'))$

i.e.
$$\int_{-\infty}^{r'} g(r) \, dr = r' = \int_{-\infty}^{x(r')} f(x') \, dx' = F(x(r'))$$

That is,

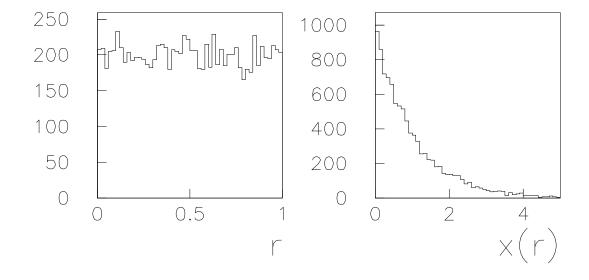
set
$$F(x(r)) = r$$
 and solve for $x(r)$.

Example of the transformation method

Exponential pdf:
$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$$
 $(x \ge 0)$

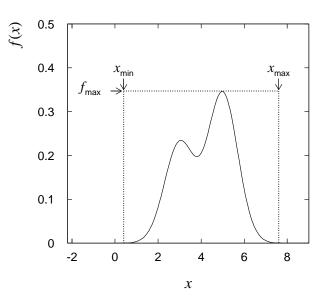
Set $\int_0^x \frac{1}{\xi} e^{-x'/\xi} dx' = r$ and solve for x(r).

$$\Rightarrow x(r) = -\xi \log(1-r)$$
 ($x(r) = -\xi \log r$ works too.)



The acceptance-rejection method (von Neumann)

Enclose the pdf in a box:

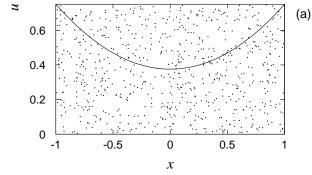


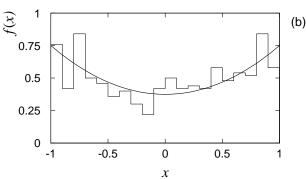
- Generate a random number x, uniform in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} - x_{\min})$ where r_1 is uniform in [0, 1].
- (2) Generate a second independent random number u uniformly distributed between 0 and f_{max} , i.e. $u = r_2 f_{\text{max}}$.
- If u < f(x), then accept x. If not, reject x and repeat.

Example:

$$f(x) = \frac{3}{8}(1+x^2)$$
$$(-1 \le x \le 1)$$

$$(-1 \le x \le 1)$$

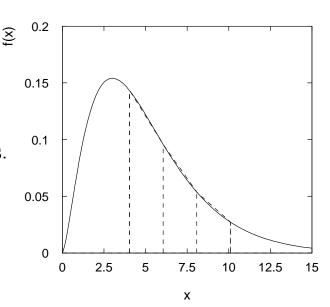




Accuracy of Monte Carlo

MC calculation = integration.

Compare to trapezoidal rule, n = number of computing steps.



For 1-dimensional integral:

MC: $n \propto \text{number of random values generated}$ accuracy $\propto 1/\sqrt{n}$

Trapezoid: $n \propto \text{number of subdivisions}$ accuracy $\propto 1/n^2$

Trapezoid wins! But in d dimensions this becomes

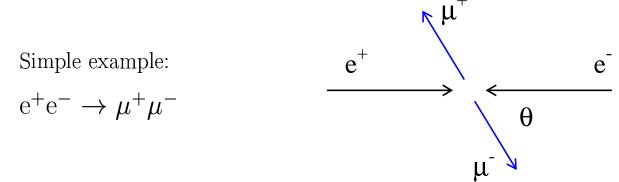
MC: $accuracy \propto 1/\sqrt{n} \leftarrow independent of d!$

Trapezoid: accuracy $\propto 1/n^{2/d}$

MC wins for d > 4. Gaussian quadrature better than trapezoid, but for high enough d, MC always wins.

(See F. James, Rep. Prog. Phys. 43 (1980) 1145.)

Monte Carlo event generators



Generate θ and ϕ :

$$f(\cos \theta; A_{\rm FB}) \propto (1 + \frac{8}{3}A_{\rm FB}\cos \theta + \cos^2 \theta)$$
 $g(\phi) = \frac{1}{2\pi}$

Less simple examples:

$$e^+e^- \rightarrow hadrons: JETSET (PYTHIA)$$

HERWIG

ARIADNE

$$pp \rightarrow hadrons: ISAJET$$

PYTHIA

HERWIG

$$e^+e^- \rightarrow WW$$
: KORALW

EXCALIBUR

ERATO

Output = 'events', i.e. for each event, a list of final state particles and their momentum vectors.

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulate detector response:

```
multiple Coulomb scattering (generate scattering angle) particle decays (generate lifetime) ionization energy loss (generate \Delta) EM/hadronic showers production of signals, electronics response :
```

Output = simulated raw data

→ input to reconstruction software (track finding/fitting, etc.)

Uses:

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data.

```
Estimate various 'efficiencies' = \frac{\text{\# events found}}{\text{\# events generated}}
```

Programming package: GEANT

1. The Monte Carlo method

numerical technique for computing probabilities (and things that can be related to probabilities) using random numbers,

MC \leftrightarrow integration,
does not depend on interpretation of probability.

2. Random number generators

produce sequence r_1, r_2, \ldots, r_n uniform in [0, 1], actually pseudorandom (i.e. reproducible if use same seed), simple algorithm: MLCG, better ones exist, e.g. RANMAR.

3. The transformation method

set cumulative distribution F(x) = r, solve for x(r), produces one value of x for each value of r.

4. The acceptance-rejection method

must be able to enclose pdf f(x) in a box, algorithm slow if pdf is sharply peaked.

5. Accuracy of MC

accuracy
$$\propto 1/\sqrt{n}$$

6. Uses in particle physics

event generators detector simulation