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The Monte Carlo method

What it is: a numerical technique for calculating probabilities

and related quantities using sequences of random numbers.
The usual steps:
(1) Generate sequence 71, T'g, . . - , Ty, uniform in [0, 1].

(2) Use this to produce another sequence Z1, 2, ..., Ty
distributed according to some pdf f(x) in which

we're interested. (N.B. Z can be a vector.)

(3) Use the & values to estimate some property of f(x), e.g.
fraction of & values with a < x < b gives /a b f(:C) dzx.

— MC calculation = integration (at least formally)
Usually trivial for 1-d: /a ’ f(x) dx obtainable by other methods.
MC more powerful for multidimensional integrals.

MC x values = ‘simulated data’

— use for testing e.g. statistical procedures.
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Random number generators

Goal: uniformly distributed values in [0, 1].
Toss coin for e.g. 32 bit number ... (too tiring).
— ‘random number generator’

= computer algorithm to generate 11,79, ..., 7y.
Example: the multiplicative linear congruential generator (MLCG)

niv1 = (an;) modm,  where

n; = integer
a = multiplier
M = modulus

No = seed
N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2.
The n; follow periodic sequence in |1, — 1].

Example (cf. Brandt): a = 3, m =7, ng = 1:

ny = (3-1)mod7 = 3
ny = (3-3)mod7 = 2
ny = (3-2)mod7 = 6
ny = (3-6)mod7 = 4
ns = (3-4)mod7 = 5

ng = (3-5)mod7 = 1 < sequence repeats!

Choose @, m, to obtain long period (maximum =m — 1 ).
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Random number generators (continued)

?’L.

r: = — arein [0,1] (0 and 1 excluded), but are they ‘random’???
m

Choose @, m, so that the 7; pass various tests of randomness:

Uniform distribution in [0, 1]

All pairs independent (no correlations)

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests
a = 40692
m = 2147483399

Test with 10000 generated values:
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Far better algorithms available e.g. RANMAR, period &= 2 X 1043,
For more info see e.g.

F. James, Comput. Phys. Commun. 60 (1990) 111;

Brandt, chapter 4.

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Program for generating uniform random numbers with RANMAR

program TEST_RANMAR
implicit NONE

¢ Needed for HBOOK routines

integer hsize
parameter (hsize = 100000)
integer hmemor (hsize)

common /pawc/ hmemor

¢ Local variables

character*80 outfile

integer i, icycle, istat

integer NTOTIN, NTO2IN, IJKLIN

real rvec(1) ! vector of random nos. (here only 1)

¢ Initialize HBOOK, open histogram file, book histograms, set seed.

call HLIMIT (hsize)

outfile = ’test_ranmar.his’

call HROPEN (20, ’histog’, outfile, ’N’, 1024, istat)
call HBOOK1 (1, ’uniform dist’, 100, 0., 1., 0.)

write (*, *) ’Enter initial seed between 0 and 900 000 000’
read (x, x) IJKLIN

NTOTIN = O
NTO2IN = O
call RMARIN(IJKLIN,NTOTIN,NTO2IN) ! sets initial seed

¢ Generate 10000 values, enter into histogram, then store histogram.

do i =1, 10000
call RANMAR (rvec, 1)
call HF1 (1, rvec(1l), 1.)
end do

call HROUT (0, icycle, ’ )
call HREND (’histog’)

stop
END
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The transformation method

Given 71,79, . . . , T, uniform in [0, 1], find 1, xo, ..., Ty

which follow f(x) by finding a suitable transformation :C(’I“)
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Require: P(r < 7') = P(z < z(r"))
ie. [1g(r)dr =1 = ["U) f(a')da' = F((r"))

o0

That is,

set F(:C(?“)) = 7 and solve for x('r)
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Example of the transformation method

1
Exponential pdf: f(:l?, 5) — e/t (x > O)

¢ >

1
Set /Oa7 —e_x,/E dx’ = r and solve for :C(?“)

§
= x(r)=—€log(l—7r) (x(r) = —&logr works too.)
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The acceptance-rejection method (von Neumann)

()

04 r

Enclose the pdf in a box: 03 |

02 r

01 r

(1) Generate a random number &, uniform in [mein, :I:max], ie.
T = Tmin T T1 (:IJmaX — :Cmin) where 71 1s uniform in [0, 1].
(2) Generate a second independent random number u uniformly
distributed between 0 and finax, i.e. U = 79 fmax.
(3) Ifu < f(x), then accept . If not, reject T and repeat.
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Accuracy of Monte Carlo
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MC calculation = integration. 015 - 1
Compare to trapezoidal rule,
: 01 I .
. = number of computing steps. .
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For 1-dimensional integral:
MC: N X number of random values generated

accuracy o< 1/4/n

Trapezoid: 71 X number of subdivisions

accuracy o< 1/ n?

Trapezoid wins! But in d dimensions this becomes

MC: accuracy ¢ 1/4/n < independent of d !

Trapezoid: accuracy < 1/ n2/d

MC wins for d > 4. Gaussian quadrature better than trapezoid,
but for high enough d, MC always wins.
(See F. James, Rep. Prog. Phys. 43 (1980) 1145.)
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Monte Carlo event generators

+
u
Simple example: e \

ete” — utu” \9
R

Generate @ and ¢:

f(cos0; Apg) o (1 + 3 App cosd + cos®§)

9(®) 1

o7
Less simple examples:

ete”™ — hadrons: JETSET (PYTHIA)
HERWIG
ARIADNE

pp — hadrons: ISAJET
PYTHIA
HERWIG

ete” — WW: KORALW
EXCALIBUR
ERATO

Output = ‘events’, i.e. for each event, a list of final state

particles and their momentum vectors.
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Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulate detector response:
multiple Coulomb scattering (generate scattering angle)
particle decays (generate lifetime)
ionization energy loss (generate A\)

EM /hadronic showers

production of signals, electronics response

Output = simulated raw data

— input to reconstruction software (track finding/fitting, etc.)
Uses:

Predict what you should see at ‘detector level’ given a certain

hypothesis for ‘generator level’. Compare with the real data.

# events found

Estimate various ‘efficiencies’ =
# events generated

Programming package: GEANT
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Lecture 3 summary

. The Monte Carlo method

numerical technique for computing probabilities (and things that
can be related to probabilities) using random numbers,

MC < integration,

does not depend on interpretation of probability.

2. Random number generators

produce sequence 7’1, T2, . . . , Ty uniform in [O, 1],
actually pseudorandom (i.e. reproducible if use same seed),
simple algorithm: MLCG,

better ones exist, e.g. RANMAR.

3. The transformation method

set cumulative distribution F’ (:C) = 1, solve for :C(’I“),

produces one value of x for each value of 7.

4. The acceptance-rejection method

must be able to enclose pdf f(:C) in a box,
algorithm slow if pdf is sharply peaked.

5. Accuracy of MC
accuracy o< 1/4/n

6. Uses in particle physics

event generators

detector simulation
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