Statistical tests (part I)

1. Hypotheses, test statistics, significance level, power
2. An example with particle selection
3. The Neyman-Pearson lemma
4. Constructing a test statistic:

 Fisher discriminant function

 Neural networks
Hypotheses, test statistics

Suppose the result of a measurement is \(\vec{x} = (x_1, \ldots, x_n) \)
e.g. events from \(e^+ e^- \) collisions; for each event measure
\[
\begin{align*}
x_1 &= \text{number of charged particles produced} \\
x_2 &= \text{mean } p_\perp \text{ of particles} \\
x_3 &= \text{number of ‘jets’ (according to some algorithm)} \\
x_4 &= \ldots
\end{align*}
\]
\(\vec{x} \) follows some joint pdf in an \(n \)-dimensional space, which depends
on the type of event produced, i.e. \(e^+ e^- \to q\bar{q}, e^+ e^- \to WW, \) etc.
That is, the joint pdf \(f(\vec{x}) \) is specified by a certain

HYPOTHESIS

i.e. predicted probability densities \(f(\vec{x}|H_0), f(\vec{x}|H_1), \) etc.
(Note sloppy but traditional notation: usually \(H_0, H_1, \ldots \) not r.v.s.)

Simple hypothesis: \(f(\vec{x}) \) completely specified,
Composite hypothesis: form of \(f(\vec{x}; \theta) \) given, parameter \(\theta \) unknown.

Usually awkward to work with multidimensional \(\vec{x} \),
\[\Rightarrow \text{construct test statistic of lower dimension (e.g. scalar), } t(\vec{x}): \]
compactify data,
try not to lose ability to discriminate between hypotheses.

The statistic \(t \) then has pdfs \(g(t|H_0), g(t|H_1), \ldots \)
Critical region, errors of 1st and 2nd kind

Consider a test statistic t following $g(t|H_0)$, $g(t|H_1)$, …

Define a critical region where t is not likely to occur if H_0 is true,

e.g. for the case above, $t \geq t_{\text{cut}}$.

If observed value t_{obs} is in critical region, reject H_0, otherwise ‘accept’.

Probability to reject H_0 if it is true (error of 1st kind):

$$\alpha = \int_{t_{\text{cut}}}^{\infty} g(t|H_0) \, dt \quad \text{(significance level)}$$

Probability to accept H_0 if H_1 is true (error of 2nd kind):

$$\beta = \int_{-\infty}^{t_{\text{cut}}} g(t|H_1) \, dt \quad (1 - \beta = \text{power})$$
An example with particle selection

Suppose we obtain \(n \) energy loss measurements for a particle in a drift chamber, construct \(t = \) truncated mean of the measurements, and suppose we know the particles are either electrons or pions:

\[
H_0 = \text{electron (signal)} \\
H_1 = \text{pion (background)}
\]

Select electrons by requiring \(t < t_{\text{cut}} \). The selection efficiencies are:

\[
\varepsilon_e = \int_{-\infty}^{t_{\text{cut}}} g(t|e) \, dt = 1 - \alpha
\]

\[
\varepsilon_\pi = \int_{-\infty}^{t_{\text{cut}}} g(t|\pi) \, dt = \beta
\]

Loose cut: most e accepted, lots of \(\pi \) background
Tight cut: low signal efficiency, pure sample

Fractions of e, \(\pi \) may be unknown; \(t \) follows

\[
f(t; a_e) = a_e g(t|e) + (1 - a_e) g(t|\pi)
\]

\[\rightarrow\] estimate \(a_e \) (for now assume \(a_e, a_\pi = 1 - a_e \) known)
Purity of selected sample

For a measured value t, what is the probability to be e/π?

$$h(e|t) = \frac{a_e g(t|e)}{a_e g(t|e) + a_\pi g(t|\pi)}$$

(Bayes’ theorem)

$$h(\pi|t) = \frac{a_\pi g(t|\pi)}{a_e g(t|e) + a_\pi g(t|\pi)}$$

Bayesian: degree of belief that this particle is e or π

Frequentist: fraction of particles at given t which are e/π

→ here both approaches make sense

Often want purity of selected sample:

$$p_e = \frac{\text{number of electrons with } t < t_{\text{cut}}}{\text{number of all particles with } t < t_{\text{cut}}}$$

$$= \frac{\int_{-\infty}^{t_{\text{cut}}} a_e g(t|e) \, dt}{\int_{-\infty}^{t_{\text{cut}}} (a_e g(t|e) + (1 - a_e) g(t|\pi)) \, dt}$$

$$= \frac{\int_{-\infty}^{t_{\text{cut}}} h(e|t) \, f(t) \, dt}{\int_{-\infty}^{t_{\text{cut}}} f(t) \, dt}$$

= electron probability averaged over interval $(-\infty, t_{\text{cut}}]$

Sometimes $h(e|t)$ is reinterpreted as the test statistic;

in principle OK, but but you need to know electron fraction a_e.

G. Cowan – Computing and Statistical Data Analysis – University of London Postgraduate Lectures
The Neyman–Pearson lemma

Consider a multidimensional test statistic \(\vec{t} = (t_1, \ldots, t_m) \); hypotheses \(H_0 \) (‘signal’) and \(H_1 \) (‘background’).

What is the optimal choice of the critical region (i.e. cuts)?

The Neyman–Pearson lemma states: to get the highest purity for a given efficiency, (i.e. highest power for a given significance level), choose the acceptance region such that

\[
g(t|H_0) > c,
\]

where \(c \) = constant which determines the efficiency.

(For a proof see Brandt Chapter 8.) Value of \(c \) left open; choose this depending on what efficiency you want.

Equivalently, the optimal scalar test statistic is

\[
r = \frac{g(t|H_0)}{g(t|H_1)},
\]

called the likelihood ratio for simple hypotheses \(H_0 \) and \(H_1 \). Requiring \(r > c \) gives maximum purity for a given efficiency.

N.B. any monotonic function of \(r \) is just as good.
Constructing a test statistic

Example: \(H_0 = e^+e^- \rightarrow WW \rightarrow \text{hadrons} \) (usually four jets)
\[
H_1 = e^+e^- \rightarrow qq \rightarrow \text{hadrons} \quad (\text{usually two jets})
\]

For each event measure \(\vec{x} = (x_1, \ldots, x_n) \).

According to Neyman–Pearson, to select WWs we should cut on
\[
t(\vec{x}) = \frac{f(\vec{x}|H_0)}{f(\vec{x}|H_1)},
\]
but we need to know \(f(\vec{x}|H_0) \) and \(f(\vec{x}|H_1) \).

In practice, get these from Monte Carlo event generator:

- Generate events, for each, obtain \(\vec{x} \) and enter into
 \(n \)-dimensional histogram. If e.g. \(M \) bins per component,
 total number of cells in \(\vec{x} \)-space = \(M^n \)

Approximate \(f(\vec{x}|H) \) by probability to be in corresponding cell,
i.e. determine \(M^n \) parameters. But \(n \) is potentially large!

\(\Rightarrow \) prohibitively large number of cells to populate with MC data.

Compromise solution:

- Make Ansatz for form of \(t(\vec{x}) \) with fewer parameters;
- determine the parameters (e.g. using MC) to give best
discrimination between \(H_0 \) and \(H_1 \).
Linear test statistic

Ansatz: \[t(\vec{x}) = \sum_{i=1}^{n} a_i x_i = \vec{a}^T \vec{x} \]

A choice of \(\vec{a} \) gives certain pdfs \(g(t|H_0), g(t|H_1) \).

Choose the \(a_i \) to maximize ‘separation’ between \(g(t|H_0), g(t|H_1) \).

\[\rightarrow \text{Must define ‘separation’.} \]

We have the expectation values and covariances,
\[
(\mu_k)_i = \int x_i f(\vec{x}|H_k) \, d\vec{x},
\]
\[
(V_k)_{ij} = \int (x - \mu_k)_i (x - \mu_k)_j f(\vec{x}|H_k) \, d\vec{x},
\]
\[k = 0, 1 \quad \text{(hypothesis)}, \]
\[i, j = 1, \ldots, n \quad \text{(component of} \; \vec{x}). \]

Similarly for mean and variance of \(t(\vec{x}) \),
\[
\tau_k = \int t(\vec{x}) f(\vec{x}|H_k) \, d\vec{x} = \vec{a}^T \vec{\mu}_k,
\]
\[
\Sigma_k^2 = \int (t(\vec{x}) - \tau_k)^2 f(\vec{x}|H_k) \, d\vec{x} = \vec{a}^T V_k \vec{a}.
\]

We should require:

\[\text{large } |\tau_0 - \tau_1|, \]
\[\text{small } \Sigma_0^2, \Sigma_1^2 \quad \text{(pdfs tightly concentrated about their means).} \]
Fisher defines as a measure of separation

$$J(\mathbf{\tilde{a}}) = \frac{(\tau_0 - \tau_1)^2}{\Sigma_0^2 + \Sigma_1^2}.$$

The numerator of $J(\mathbf{\tilde{a}})$ is

$$(\tau_0 - \tau_1)^2 = \sum_{i,j=1}^{n} a_i a_j (\mu_0 - \mu_1)_i (\mu_0 - \mu_1)_j$$

$$= \sum_{i,j=1}^{n} a_i a_j B_{ij} = \mathbf{\tilde{a}}^T \mathbf{B} \mathbf{\tilde{a}}.$$

The denominator is

$$\Sigma_0^2 + \Sigma_1^2 = \sum_{i,j=1}^{n} a_i a_j (V_0 + V_1)_{ij} = \mathbf{\tilde{a}}^T \mathbf{W} \mathbf{\tilde{a}}.$$

This gives

$$J(\mathbf{\tilde{a}}) = \frac{\mathbf{\tilde{a}}^T \mathbf{B} \mathbf{\tilde{a}}}{\mathbf{\tilde{a}}^T \mathbf{W} \mathbf{\tilde{a}}} = \frac{\text{separation between classes}}{\text{separation within classes}}.$$

Set $\frac{\partial J}{\partial a_i} = 0 \Rightarrow \mathbf{\tilde{a}} \propto \mathbf{W}^{-1}(\mathbf{\bar{\mu}}_0 - \mathbf{\bar{\mu}}_1)$

This defines Fisher's linear discriminant function, determined up to a scale factor for $\mathbf{\tilde{a}}$.

The Fisher discriminant (continued)

We can generalize $t(\vec{x})$ to be

$$t(\vec{x}) = a_0 + \sum_{i=1}^{n} a_i x_i.$$

Use the arbitrary scale and the offset a_0 to fix τ_0, τ_1.

Then maximizing $J(\vec{a}) = \frac{(\tau_0 - \tau_1)^2}{\Sigma_0^2 + \Sigma_1^2}$ means minimizing

$$\Sigma_0^2 + \Sigma_1^2 = E_0[(t - \tau_0)^2] + E_1[(t - \tau_1)^2]$$

(index shows hypothesis for expectation value)

→ Maximizing Fisher’s $J(\vec{a})$ is a type of least squares principle.
The Fisher discriminant for Gaussian \vec{x}

Suppose $f(\vec{x} | H_k)$ is multivariate Gaussian with mean values

\[
\begin{align*}
\vec{\mu}_0 & \text{ for } H_0, \\
\vec{\mu}_1 & \text{ for } H_1,
\end{align*}
\]

and covariance matrices $V_0 = V_1 \equiv V$ for both.

The Fisher discriminant (with an offset) is

\[
t(\vec{x}) = a_0 + (\vec{\mu}_0 - \vec{\mu}_1)^T V^{-1} \vec{x}.
\]

Recall the likelihood ratio (maximum purity for given efficiency):

\[
r = \frac{f(\vec{x} | H_0)}{f(\vec{x} | H_1)}
\]

\[
= \exp\left[-\frac{1}{2}(\vec{x} - \vec{\mu}_0)^T V^{-1} (\vec{x} - \vec{\mu}_0) + \frac{1}{2}(\vec{x} - \vec{\mu}_1)^T V^{-1} (\vec{x} - \vec{\mu}_1)\right]
\]

\[
\propto e^t
\]

That is, $t \propto \log r + \text{const}.$ (monotonic) so for this case,

\[
\Rightarrow \text{ Fisher discriminant equivalent to likelihood ratio.}
\]

\textbf{N.B.} for \vec{x} following other pdfs, this no longer holds.
The Fisher discriminant for Gaussian \mathbf{x} (continued)

Multivariate Gaussian \mathbf{x} with equal covariance matrices also gives a simple expression for posterior probabilities, e.g.

$$P(H_0|\mathbf{x}) = \frac{f(\mathbf{x}|H_0)\pi_0}{f(\mathbf{x}|H_0)\pi_0 + f(\mathbf{x}|H_1)\pi_1} \quad \text{Bayes’ theorem}$$

$$= \frac{1}{1 + \frac{\pi_1}{\pi_0 r}}$$

For a particular choice of the offset a_0 this can be written as

$$P(H_0|\mathbf{x}) = \frac{1}{1 + e^{-t}} \equiv s(t),$$

which is the logistic sigmoid function:
Neural networks (1)

Used in neurobiology, pattern recognition, financial forecasting . . . here, neural nets are just a type of test statistic.

Suppose we take \(t(\vec{x}) \) to have the form

\[
t(\vec{x}) = s \left(a_0 + \sum_{i=1}^{n} a_i x_i \right)
\]

where \(s(u) = (1 + e^{-u})^{-1} \) (the ‘activation function’)

This is the **single-layer perceptron**.

\(s(\cdot) \) is monotonic \(\Rightarrow \) equivalent to linear \(t(\vec{x}) \).

G. Cowan – Computing and Statistical Data Analysis – University of London Postgraduate Lectures
Generalize this to the **multilayer perceptron**:

\[
 t(x) = s \left(a_0 + \sum_{i=1}^{m} a_i h_i(x) \right),
\]

where the \(h_i \) are functions of the nodes in the previous layer,

\[
 h_i(x) = s \left(w_{i0} + \sum_{j=1}^{n} w_{ij} x_j \right).
\]

\(a_i, w_{ij} \) = weights (connection strengths)

Easy to generalize to arbitrary number of layers.

Feed-forward net: values of a node depend only on earlier layers, usually only on previous layer → ‘network architecture’

More nodes → neural net gets closer to optimal \(t(x) \), but more parameters need to be determined.
Neural networks (3)

Parameters usually determined by minimizing an error function,

\[\mathcal{E} = E_0[(t - t^{(0)})^2] + E_1[(t - t^{(1)})^2], \]

where \(t^{(0)} \), \(t^{(1)} \) are target values, e.g. 0 and 1 for logistic sigmoid, cf. least squares principle with Fisher discriminant.

In practice, replace expectation values by averages of training data from Monte Carlo. (Adjusting parameters = network ‘learning’.)

In general this can be tricky; fortunately, programs like JETNET do it for you, e.g. with ‘error back-propogation’.

For more information see

C.M. Bishop, *Neural Networks for Pattern Recognition*,
Clarendon Press, Oxford (1995);
Neural networks (4)

An example with WW event selection

(Garrido, Juste and Martinez, ALEPH 96-144)

The input variables:

Shaded histograms: WW (signal)

Open histograms: $q\bar{q}$ (background)

The neural network output:
Choosing the input variables

Why not use all of the available input variables?

Fewer inputs \rightarrow fewer parameters to be adjusted,
\rightarrow parameters better determined for finite training data.

Some inputs may be highly correlated \rightarrow drop all but one.

Some inputs may contain little or no discriminating power between the hypotheses \rightarrow drop them.

NN exploits higher moments of joint pdf $f(\vec{x}|H)$, but these may not be well modeled in training data.

\rightarrow better to have simpler $t(\vec{x})$ where you can ‘understand what it’s doing’.

Recall that the purpose of the statistical test is usually to select objects for further study; e.g. select WW events, then measure their properties (e.g. particle multiplicity).

\Rightarrow avoid input variables that are correlated with the properties of the selected objects which you want to study.
(Not always easy; correlations may not be well known.)
Lecture 4 summary

- **Statistical tests**: test to what extent data stand in agreement with predicted probabilities, i.e. hypotheses.
- **Test statistics**: reduce vector \mathbf{x} to a single (or few) component function $t(\mathbf{x})$.
- **The ingredients of a test**: critical region, significance level, power, (related to efficiency, purity).
- **The Neyman-Pearson lemma**: gives cut region with maximum purity for a given efficiency.
- **Constructing a test statistic**: likelihood ratio best, but usually need to determine too many parameters.
- **Alternative Ansätze for statistics**:
 - Fisher discriminant function (linear)
 - Neural network (nonlinear)