Lecture 4 outline

Statistical tests (part I)

1. Hypotheses, test statistics, significance level, power
2. An example with particle selection

3. The Neyman-Pearson lemma

4. Constructing a test statistic:

Fisher discriminant function

Neural networks
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Hypotheses, test statistics

Suppose the result of a measurement is = (5131, Ceey :I:n)

+

e.g. events from e"e™ collisions; for each event measure

I1 = number of charged particles produced

I9 = mean P | of particles

T3 = number of ‘jets’ (according to some algorithm)

X4

Z follows some joint pdf in an n-dimensional space, which depends
on the type of event produced, i.e. ete”™ — ¢q, ete™ — WW, etc.
That is, the joint pdf f(f) is specified by a certain

HYPOTHESIS

i.e. predicted probability densities f(f |H 0), f(f |H 1), etc.
(Note sloppy but traditional notation: usually Hy, Hy, ...not r.v.s.)

Simple hypothesis: f(f) completely specified,

Composite hypothesis: form of f(f ; 6’) given, parameter @ unknown.

Usually awkward to work with multidimensional &,
= construct test statistic of lower dimension (e.g. scalar), t(f):
compactify data,

try not to lose ability to discriminate bewteen hypotheses.

The statistic ¢ then has pdfs g(t|Hy), g(t|H1), ...
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Critical region, errors of 1st and 2nd kind

Consider a test statistic ¢ following g(t|H 0), g(t|H 1),

g(t)

accept Hy i reject Hy

15

05

Define a critical region where t is not likely to occur if Hy is true,
e.g. for the case above, t > t.yut.

If observed value tqps is in critical region, reject H(y, otherwise ‘accept’.

Probability to reject Hy if it is true (error of 1st kind):

o= /t t|H 0 dt (significance level)

Probability to accept Hy if H1 is true (error of 2nd kind):

B = /_t?s g(t|Hy)dt (1 — B = power)
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An example with particle selection

Suppose we obtain 1 energy loss measurements for a particle in a
drift chamber, construct £ = truncated mean of the measurements,

and suppose we know the particles are either electrons or pions:

g(t)

accept Hy i reject Hy
15 4

Hy = electron (signal)
H{ = pion (background)

05 r

Select electrons by requiring ¢ < Teyt. The selection efficiencies are:

e = [[Mg(tle)dt =1 —a

ex = [ g(t|m)dt = B

Loose cut: most e accepted, lots of m background

Tight cut: low signal efficiency, pure sample
Fractions of e, 7 may be unknown; ¢ follows

f(t;ae) = aeg(tle) + (1 —ae)g(t|m)

— estimate @ (for now assume Qe, A; = 1 —ae known)
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Purity of selected sample

For a measured value ¢, what is the probability to be e/7?

h(e|t) — aeg(t|e)
acg(tle) + arg(t|m)
(Bayes’ theorem)

B ar g(t|m)
M) = oo gttle) + an gl

Bayesian: degree of belief that this particle is e or 7

Frequentist: fraction of particles at given ¢ which are e/7

— here both approaches make sense

Often want purity of selected sample:

number of electrons with ¢ < Teyt

Pe = number of all particles with T < Teyt

B fteat aog(tle)dt
P (aeg(tle) + (1 — ao)g(t|m))dt

et hfelt) f(2) dt
st f(¢) dt

— electron probability averaged over interval (—OO, tcut]

Sometimes h(e|t> is reinterpreted as the test statistic;

in principle OK, but but you need to know electron fraction @e.
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The Neyman—Pearson lemma,

Consider a multidimensional test statistic £ = (t1, -+ tm);
hypotheses H (‘signal’) and H; (‘background’).

What is the optimal choice of the critical region (i.e. cuts)?

The Neyman-Pearson lemma states: to get the highest purity for
a given efficiency, (i.e. highest power for a given significance level),

choose the acceptance region such that

g(ﬂHo)
g(t]Hy)

where ¢ = constant which determines the efficiency.

> C,

(For a proof see Brandt Chapter 8.) Value of ¢ left open; choose

this depending on what efficiency you want.

Equivalently, the optimal scalar test statistic is

_ g(t] Ho)
g(ﬂHﬁ’

called the likelihood ratio for simple hypotheses Hy and Hj.

T

Requiring > ¢ gives maximum purity for a given efficiency.

N.B. any monotonic function of 7 is just as good.
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Constructing a test statistic

Example: Hy = ete™ — WW — hadrons (usually four jets)
H; = ete™ — qg — hadrons (usually two jets)

For each event measure &' = (:Cl, ce ,:Cn).

According to Neyman—Pearson, to select WWs we should cut on

. f(Z|Hp)
@ = @y

but we need to know f(Z|Hy) and f(Z|Hy).

In practice, get these from Monte Carlo event generator:

Generate events, for each, obtain Z and enter into
n-dimensional histogram. If e.g. M bins per component,

total number of cells in Z-space = M™"

Approximate f(f |H ) by probability to be in corresponding cell,

i.e. determine M"™ parameters. But 1 is potentially large!
= prohibitively large number of cells to populate with MC data.

Compromise solution:

Make Ansatz for form of ¢(Z) with fewer parameters;
determine the parameters (e.g. using MC) to give best

discrimination between Hy and H.
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Linear test statistic

Ansatz:  £(T) = é R
A choice of @ gives certain pdfs g(t|Hy), g(t|H1).
Choose the @; to maximize ‘separation’ between g(t|Hy), g(t|Hy).
— Must define ‘separation’.
We have the expectation values and covariances,
()i = | i f (7| Hy) d,
(Vi)ij = J(x — pw)i ( — ) f(Z|Hy) dZ,
k=0,1 (hypothesis),
t,7=1,...,m  (component of ).
Similarly for mean and variance of (),

T = [H(Z)f(Z|Hy) dZ = @ i,

Y2 = [(t(Z) — 7)* f(Z|Hy) dT = @' V@

We should require:
large |7'0 — 7'1|,

small 2(2), Z% (pdfs tightly concentrated about their means).
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Linear test statistic (continued)

Fisher defines as a measure of separation

N (7'0—7'1)2
N0 ="Sa v

The numerator of J (C_L’) is

n

(To - 71)2 = Z.jZ:l az‘aj(ﬂo — Ml)i(uo — M1)j

& B _—*TB—»‘
—'Zlaiaj ij — @ a.
L=

The denominator is

23—1—22 — _Z"’:laz-aj(%Jer)ij —alWa.

LJ=

o . a’ Ba separation between classes
This gives J (a) = S s = : —
a' W a separation within classes

aJ — — —
Set —— =0 = ao Wiy — ji1)
(‘9&@-
This defines Fisher’s linear discriminant function,

determined up to a scale factor for @.

R.A. Fisher, Ann. Eugen. 7 (1936) 179.
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The Fisher discriminant (continued)

We can generalize t(a_f) to be

t(f) = qag + % a;x;.

=1
Use the arbitrary scale and the offset ag to fix g, 71.

2
R (To—Tl)
Then maX1mlzmg J (a) — means mmlmlzmg

2§+ X%

2(2) -+ 22 = E()[(t — 7'0)2] —+ El[(t — 7'1)2]
/!

(index shows hypothesis for expectation value)

— Maximizing Fisher’s J (ff) is a type of least squares principle.
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The Fisher discriminant for Gaussian

Suppose f(f |H k) is multivariate Gaussian with mean values

flo for H,
ﬁl for H1,

and covariance matrices Vy = V] = V for both.
The Fisher discriminant (with an offset) is
t(x) = agp + (,LL()—,LL1> V7/x.

Recall the likelihood ratio (maximum purity for given efficiency):

ocet

That is, t o< log 7 4 const. (monotonic) so for this case,
—> Fisher discriminant equivalent to likelihood ratio.

N.B. for Z following other pdfs, this no longer holds.
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The Fisher discriminant for Gaussian Z (continued)

. . . — . . .
Multivariate Gaussian & with equal covariance matrices also

gives a simple expression for posterior probabilities, e.g.

f(Z|Ho)mo
(Z|Ho)mo + f(Z|H1)m

P(Hy|%) = 7 <— Bayes’ theorem

1
1+ &

wor

For a particular choice of the offset ag this can be written as

1
1 + et

P(Ho|Z) =

S(t) )

which is the logistic sigmoid function:

s(t)

0.8

0.6

0.4

0.2
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Neural networks (1)

Used in neurobiology, pattern recognition, financial forecasting . ..

here, neural nets are just a type of test statistic.

Suppose we take t(f) to have the form

t(f) =S (CLQ + f:l CLZ'LCZ')

1=
where s(u) = (1 + e_u)_l (the ‘activation function’)
This is the single-layer perceptron.

8() is monotic = equivalent to linear t(f)

X1
O t(x)
T
output node (could
Xn be more than one)

T

input layer
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Neural networks (2)

Generalize this to the multilayer perceptron:

hidden layer

— m —
The output is defined by t(:c) =S (ao + 'Zl aihi(x)) )
1=

where the h; are functions of the nodes in the previous layer,
= n
hz(x) = S |W;o + j;l Wi Tj| -
a;, W;; = weights (connection strengths)

Easy to generalize to arbitrary number of layers.
Feed-forward net: values of a node depend only on earlier layers,

usually only on previous layer — ‘network architecture’

More nodes — neural net gets closer to optimal t(f),

but more parameters need to be determined.
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Neural networks (3)

Parameters usually determined by minimizing an error function,
€ = Eol(t —t? + Ey[(t — tW),

where t(o), t() are target values, e.g. 0 and 1 for logistic sigmoid,

cf. least squares principle with Fisher discriminant.

In practice, replace expectation values by averages of training data

from Monte Carlo. (Adjusting parameters = network ‘learning’.)

In general this can be tricky; fortunately, programs like JETNET

do it for you, e.g. with ‘error back-propogation’.

For more information see

L. Lonnblad et al., Comput. Phys. Commun. 70 (1992) 167,

C. Peterson, et al., Comput. Phys. Commun. 81 (1994) 185;

C.M. Bishop, Neural Networks for Pattern Recognition,
Clarendon Press, Oxford (1995);

John Hertz, et al., Introduction to the Theory of Neural
Computation, Addison-Wesley, New York (1991);

B. Miiller et al., Neural Networks: an Introduction, 2nd edition,

Springer, Berlin (1995).

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Neural networks (4)

An example with WW event selection
(Garrido, Juste and Martinez, ALEPH 96-144)
The input variables:

Shaded histograms: WW (signal)
Open histograms: ¢q (background)
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Choosing the input variables

Why not use all of the available input variables?

Fewer inputs — fewer parameters to be adjusted,

— parameters better determined for finite training data.

Some inputs may be highly correlated — drop all but one.

Some inputs may contain little or no discriminating power

between the hypotheses — drop them.

NN exploits higher moments of joint pdf f(Z|H),

but these may not be well modeled in training data.

— better to have simpler t(f) where you can

‘understand what it’s doing’.

Recall that the purpose of the statistical test is usually
to select objects for further study; e.g. select WW events,

then measure their properties (e.g. particle multiplicity).

= avoid input variables that are correlated with the
properties of the selected objects which you want to study:.

(Not always easy; correlations may not be well known.)
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Lecture 4 summary

e Statistical tests: test to what extent data stand in agreement
with predicted probabilities, i.e. hypotheses.

e Test statistics: reduce vector & to a single (or few) component
function £(Z).

e The ingredients of a test: critical region, significance level,
power, (related to efficiency, purity).

e The Neyman-Pearson lemma: gives cut region with maximum
purity for a given efficiency.

e Constructing a test statistic: likelihood ratio best, but usually
need to determine too many parameters.

e Alternative Ansatze for statistics:

Fisher discriminant function (linear)

Neural network (nonlinear)
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