Lecture 8 outline

The method of least squares

1. Connection with maximum likelihood
Linear LS problem

LS fit of a polynomial

Testing goodness-of-fit with LS

LS with binned data
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Combining measurements with LS

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Connection with maximum likelihood

Suppose we have Gaussian rv.s 4, ¢ = 1,..., N

—

Elyi] = X = M3 0),

where 1, ..., TN and V[yz] = 0,? are known.

y
2
Goal: estimate parameters 5, 15
i.e. fit the curve through .
the points.
05 r

The joint pdf for independent Gaussian y; is

v N1 —(yi — Ni)?
9(g: A, 0%) = 11 o2 eXp( 202

1

—

i.e. the log-likelihood function is (drop terms not depending on 6),

= 1 N (i — Mz 0))?
10gL():—2i§1( 0(-2 )

— maximizing log L( ) same as minimizing

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures



Definition of least squares (LS) estimators

If the y; follow a multivariate Gaussian, covariance matrix V/,

1 1

>V _ e RSV A 7 V- S
g(ya )‘7 V) T (27T)N/2|V|1/2 GXp 2(y )\) V (y )‘)
then the log-likelihood is

= 1 N S .
log L(0) = —52.].2:1(% — AMzi;0)) (V™ )iy — AMzy:0)),

l.e. we should minimize

—

(0) = = (= Nea )V ys — Aasi6)

Its minimum defines the least squares (LS) estimators 6,
even when 9; not Gaussian. (In fact, 9; often Gaussian because

central limit theorem leads to Gaussian measurement errors.)

C.F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus
Conicis Solem Ambentium, Hamburgi Sumtibus Frid. Perthes et
H.Besser Liber 11, Sectio IT (1809);

C.F. Gauss, Theoria Combinationis Observationum Erroribus
Minimis Obnoxiae, pars prior (15.2.1821) et pars posterior
(2.2.1823), Commentationes Societatis Regiae Scientiarium

Gottingensis Recectiores Vol. V (MDCCCXXIII).
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Linear least squares fit

—

LS has particularly simple properties if )\(x° 9) linear in 6:

)

A(w:6) = 3 a;(2)6;

J

where a; (:C) are any linearly independent functions of x.

N

— @ have zero bias, minimum variance (Gauss—Markov theorem)
Matrix notation: let Aij = a; (:132),

—

X0 =G - NV G- X

>

<y

— —

) VG - A9

AN

<y

= (

Set derivitives with respect to 6; to zero,
Vil = =247V 1y — ATV146) = 0

Solve to get the LS estimators,

A

0= (ATv A ATV g = By

N

N.B. estimators ; are linear functions of the measurements Y;.
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Variance of LS estimators

Error propagation (exact for linear problem) for Uij = COV[éZ-, éj]:
U=BVB' = (A'v-tA)™

Equivalently, use

1
92

82 X2
06,00,

(U™

6=0

— coincides with RCF bound if y; are Gaussian.

— —

For )\(:c; 9) linear in the parameters, X2(9) is quadratic,

2°M _ L2(h 1m[82X2] 0O — P,

— variances from tangent planes to (hyper)ellipse,

A

X*(0) = X*(0) + 1 = Xy + 1
If )\(x; 5) not linear in 9_: then expressions above not exact
(but may still be good approximations).
Still interpret region XQ(g) < X1211in + 1 as ‘confidence region’,
having given probability of containing true 0 (more later).
N.B. formulae above don’t depend on ¥; being Gaussian,

but in any case need V;; = COV[yZ-, yj].
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LS fit of a polynomial

m .
Fit a polynomial: )\(x; O, ..., 6’m> = 2 t9j x’

. — J
aj(z) =z
y : . . . .
Examples: ®[ — 0"order, x*=455 I
- - 1% order, x*=3.99 :
Oth order (1 parameter) | Aorder, x'=00  }
4 r ///:__;" m
Ist order (2 parameters) +*
4th order (5 parameters) L + |
0 L L L I I
o 1 2 3 4 5 6

I-parameter fit (i.e. horizontal line):

By = 2.66 + 0.13
X12nin — 455 46

25 2.6 2.7 2.8 2.9

0y, from XZ(éO + Uéo) = 2. + 1
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Polynomial fit (continued)

2-parameter case (line with nonzero slope):

— 1 I T T I

0o = 0.93 & 0.30,
9, = 0.68 £0.10
cov[by, 61] = —0.028
r = —0.90
2 = 3.99 LS estimate

0.4

0.4 0.6 0.8 1 1.2 14

Tangent lines — T4y Ty
Angle of ellipse — correlation (same as for ML)

Could transform (@0, 6’1) — (ﬁo, 771) such that COV[ﬁO, ﬁl] =0,
easier to work with uncorrelated estimators, but interpretation

of new parameters may not be obvious, c¢f. SDA Section 1.7.

D-parameter case:

curve goes through all points,
2
Xmin — 07
(number of parameters = number of data points)

Value of X?nin reflects agreement between data and hypothesis,

— use as goodness-of-fit test statistic
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Testing goodness-of-fit with LS

If: they;, ¢ =1,..., N, are Gaussian (V;; known),
the hypothesis A(x; 67) is linear in @;, 1 = 1,...,m, and
the form of the hypothesis )\(:1:; 67) is correct,

then sznin follows chi-square pdf for N — m degrees of freedom.

From this compute P-value,

/2 anz

mlIl

Consider e.g. 2-parameter fit:
Xfmn =399 N—m=3— P =0.263

i.e. repeat experiment many times, 26.3% will have higher X?nin:

f(x*)

— x2 from MC experiments

1000 MC experiments:

For the horizontal line fit, we had
X2 =455, N—m=4— P =3.1x 107"
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Goodness-of-fit vs. smallness-of-errors

Small statistical error does not mean a good fit (nor vice versa).
Curvature of X2 near its minimum — statistical errors (o)

Value of X12nin — goodness-of-fit

Horizontal line fit, move the data points, keep errors on points same:

y
A 6 —— 9,=284+013
0o = 2.84 +0.13 = a8
2 -

Xmin = 4.48 4 + +

' | |
Variance same as before, A Ty i
now X?nin ‘good’.

— X2(90) shifted down, same curvature as before.

Variance of estimator (statistical error) tells us:
if experiment repeated many times, how wide is the distribution

of the estimates 6. (Doesn’t tell us whether hypothesis correct.)

P-value tells us:
if hypothesis is correct and experiment repeated many times,
what fraction will give equal or worse agreement between data

and hypothesis according to the statistic Xr2nin°

Low P-value — hypothesis may be wrong — systematic error.
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.S with binned data

1 T T T

£(%)

— normalized histogram

Histogram: 0g |~ fitted pdf
N bins, n entries.
06 r
Hypothesized pdf:
f(CC ; (9) 04 |
0.2 |
1 0.5 0 0.5 1
X
We have
y; = number of entries in bin 2,
— pMmax - 5
Ni(0) =n | oim f(x;0)dx = npi(0)

where UZZ = V[yz-], here not known a priori.

Treat the y; as Poisson r.v.s; in place of true variance take either

—

o’ = Ai(0) (LS method)

]

0? =1;  (Modified LS method)

MLS sometimes easier computationally, but X?nin no longer follows

chi-square pdf (or is undefined) if some bins have few (or no) entries.
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Normalization with binned LS

Do not ‘fit the normalization’:

\(0,v) = V/;;in f(z;0)dz = vp;(0)

i.e. introduce adjustable v, fit along with 6.

U is a bad estimator for . (which we know, anyway!)

~ )
VMLS = T — Xmin

Example with n = 400 entries, N = 20 bins:

N(x)

60

| —— data (400 entries) (@)
--- LS: x*=17.1,0=408.5+ 20.2
rrrrrrrrrr MLS: x*=17.8,0=2382.2+195

Expect Xfmn around N — m,

N(X)

60

| —— data (400 entries) (b)
- -~ LS: x*=17.3, v = 400 (fixed)
rrrrrrrrrr ML: x2=17.6, ¥ = 400.0 + 20.0

— relative error in U large when /N large, 1 small

Either get m directly from data for LS (or better, use ML).

G. Cowan — Computing and Statistical Data Analysis — University of London Postgraduate Lectures




Combining measurements with LS

Use LS to obtain weighted average of /N measurements of A:

Y; = result of measurement ¢, ¢ = 1, ..., IV;

o 22 — V[yz-], assume known;

A = true value (plays role of ).

For uncorrelated ;, minimize

oy N (Y — A)?
X (A) T igl 0_22 )

2
Set % = (0 and solve,

N 2
3 — i1 Yi/ 0

- N 1/0?
- 1
A p—
VN = v 10
If COV[yZ', y]] = Vij, minimize
X’(A) = 2 (i = NV iy — N),
22 (Vi

o N
— A= > w;Y;, w; =
N _
=1 Zk,l=1(V bk

LS A has zero bias, minimum variance (Gauss-Markov theorem).
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Example of averaging two correlated measurements

2
o{ pO109 )

Suppose we have Y1, Yo, and V = ( 9
PO102 09

2
. o5 — poL0
= A=wyr + (1 —wy, w= 2 PO

o} + 03 — 2p0107

V[S\] _ (1 T IOQ)O-%O-% 2

=0
0?4+ 03 — 2p0107

The increase in inverse variance due to 2nd measurement is

1 1 o 1)?
oF) 1 —p~ \o1 09

1
0-2
— 2nd measurement can only help.

If p > o01/09, — w < 0,
— weighted average is not between 91 and ¥y (!7)

Cannot happen if correlation due to common data, but
possible for shared random effect; very unreliable if e.g.

p, 01, 09 incorrect.

See example in SDA Section 7.6.1 with two measurements at same
temperature using two rulers, different thermal expansion coefficients:
average is outside the two measurements; used to improve

estimate of temperature.
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Lecture 8 summary

The method of least squares

1. Connection with maximum likelihood: ML and LS same for
Gaussian ;.

—

2. Linear LS problem: if /\(33; 6’) linear in the parameters, LS
can be solved by matrix inversion; estimators are linear functions
of the measurements ;.

3. LS fit of a polynomial: an example of the linear problem. X?nin
gets smaller when using more parameters, goes to zero for N = m.

4. Testing goodness-of-fit with LS: use X?nin as goodness-of-fit
statistic, follows chi-square pdf for N — m degrees of freedom.

5. LS with binned data: treat y; as Poisson,
LS: 022 = )\z<9)7
MLS: 07 = y;
Do not fit the normalization (get 1 from the data).
6. Combining measurements with LS: LS gives zero bias,

minimum variance. Additional measurements can only help. For
large correlations, weights can be negative.
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