Interval estimation

1. The standard deviation as statistical error

2. Classical confidence intervals
 (a) for a parameter with a Gaussian distributed estimator
 (b) for the mean of a Poisson distribution

3. Approximate confidence intervals using the likelihood function or χ^2
The standard deviation as statistical error

My experiment: \(\text{data } x_1, \ldots, x_n \rightarrow \text{estimate } \hat{\theta}_{\text{obs}} \)

Also estimate variance of \(\hat{\theta} \), \(\hat{\sigma}^2_\hat{\theta} \), often report something like

\[
\hat{\theta}_{\text{obs}} \pm \hat{\sigma}_\hat{\theta} = 5.73 \pm 0.21
\]

What does this really mean?

We know \(\hat{\theta} \) will follow some pdf \(g(\hat{\theta}; \theta) \),

- estimate of \(\theta \) is 5.73,
- estimate of \(\sigma_\theta \) is 0.21 \(\rightarrow \sigma_\theta \) measures width of \(g(\hat{\theta}; \theta) \)

Often \(g(\hat{\theta}; \vec{\theta}) \) is multivariate Gaussian,

\[
\hat{\theta}, \ V = \text{cov}[\hat{\theta}_i, \hat{\theta}_j] \text{ summarize our (estimated) knowledge about } g(\hat{\theta}; \theta) \rightarrow \text{input for error propagation, LS averaging, } \ldots
\]

We could stick with this as the convention for reporting errors, regardless of the pdf of \(g(\hat{\theta}; \theta) \).

Sometimes we do (e.g. for PDG averaging), but \(\ldots \)

if \(g(\hat{\theta}; \theta) \) is Gaussian, then the interval

\[
[\hat{\theta}_{\text{obs}} - \hat{\sigma}_\hat{\theta}, \hat{\theta}_{\text{obs}} + \hat{\sigma}_\hat{\theta}]
\]

is a 68.3\% central confidence interval (more later).

This is the more usual convention, and if \(g(\hat{\theta}; \theta) \) not Gaussian,

central confidence interval \(\rightarrow \) asymmetric errors
Classical confidence intervals (1)

We have an estimator $\hat{\theta}$ for a parameter θ and an estimate $\hat{\theta}_{\text{obs}}$, we also need $g(\hat{\theta}; \theta)$ for all θ.

Specify ‘upper and lower tail probabilities’, e.g. $\alpha = \beta = 0.05,$ then, find functions $u_\alpha(\theta), v_\beta(\theta)$ such that

$$\alpha = P(\hat{\theta} \geq u_\alpha(\theta)) = \int_{u_\alpha(\theta)}^{\infty} g(\hat{\theta}; \theta) d\hat{\theta} = 1 - G(u_\alpha(\theta); \theta),$$

$$\beta = P(\hat{\theta} \leq v_\beta(\theta)) = \int_{-\infty}^{v_\beta(\theta)} g(\hat{\theta}; \theta) d\hat{\theta} = G(v_\beta(\theta); \theta).$$

The region between $u_\alpha(\theta)$ and $v_\beta(\theta)$ is called the confidence belt.
Classical confidence intervals (2)

The probability to find $\hat{\theta}$ in the confidence belt, regardless of θ,

$$P(v_{\beta}(\theta) \leq \hat{\theta} \leq u_{\alpha}(\theta)) = 1 - \alpha - \beta.$$

Assume $u_{\alpha}(\theta)$, $v_{\beta}(\theta)$ monotonic, then

$$a(\hat{\theta}) \equiv u_{\alpha}^{-1}(\hat{\theta}),$$

$$b(\hat{\theta}) \equiv v_{\beta}^{-1}(\hat{\theta}).$$

The inequalities

$$\hat{\theta} \geq u_{\alpha}(\theta),$$

$$\hat{\theta} \leq v_{\beta}(\theta),$$

imply

$$a(\hat{\theta}) \geq \theta,$$

$$b(\hat{\theta}) \leq \theta.$$

$$\Rightarrow P(a(\hat{\theta}) \geq \theta) = \alpha,$$

$$P(b(\hat{\theta}) \leq \theta) = \beta.$$

or together,

$$P(a(\hat{\theta}) \leq \theta \leq b(\hat{\theta})) = 1 - \alpha - \beta.$$
Classical confidence intervals (3)

The interval \([a(\hat{\theta}), b(\hat{\theta})]\) is called a confidence interval with confidence level or coverage probability \(1 - \alpha - \beta\).

Its quintessential property:

\[
\text{probability to contain true parameter is } 1 - \alpha - \beta.
\]

N.B. the interval is random, the true \(\theta\) is an unknown constant.

Often report interval \([a, b]\) as \(\hat{\theta}^{+d}_{-c}\), i.e. \(c = \hat{\theta} - a\), \(d = b - \hat{\theta}\).

So what does \(\hat{\theta} = 80.25^{+0.31}_{-0.25}\) mean? It does not mean:

\[
P(80.00 < \theta < 80.56) = 1 - \alpha - \beta, \text{ but rather:}
\]

- repeat the experiment many times with same sample size,
- construct interval according to same prescription each time,
- in \(1 - \alpha - \beta\) of experiments, interval will cover \(\theta\).

Sometimes only specify \(\alpha\) or \(\beta\), \rightarrow \text{one-sided interval (limit)}

Often take \(\alpha = \beta = \frac{\gamma}{2}\) \(\rightarrow\) coverage probability \(= 1 - \gamma\)

\(\rightarrow\) central confidence interval

N.B. ‘central’ confidence interval does not mean the interval is symmetric about \(\hat{\theta}\), but only that \(\alpha = \beta\).

The HEP error ‘convention’: 68.3\% central confidence interval.
Classical confidence intervals (4)

Usually, we don’t construct the confidence belt, but rather solve

\[
\alpha = \int_{\theta_{\text{obs}}}^{\infty} g(\hat{\theta}; a) \, d\hat{\theta} = 1 - G(\hat{\theta}_{\text{obs}}; a)
\]

\[
\beta = \int_{-\infty}^{\hat{\theta}_{\text{obs}}} g(\hat{\theta}; b) \, d\hat{\theta} = G(\hat{\theta}_{\text{obs}}; b)
\]

for interval limits \(a\) and \(b\). (Gives same thing.)

\[\rightarrow a\] is hypothetical value of \(\theta\) such that \(P(\hat{\theta} > \hat{\theta}_{\text{obs}}) = \alpha;\]
\[b\] is hypothetical value of \(\theta\) such that \(P(\hat{\theta} < \hat{\theta}_{\text{obs}}) = \beta.\]
Confidence interval for Gaussian distributed estimator

Suppose we have $g(\hat{\theta}; \theta) = \frac{1}{\sqrt{2\pi} \sigma^2_{\hat{\theta}}} \exp\left(-\frac{(\hat{\theta} - \theta)^2}{2\sigma^2_{\hat{\theta}}}
ight)$.

To find confidence interval for θ, solve

\[
\alpha = 1 - G(\hat{\theta}_{\text{obs}}; a, \sigma_{\hat{\theta}}) = 1 - \Phi\left(\frac{\hat{\theta}_{\text{obs}} - a}{\sigma_{\hat{\theta}}}\right),
\]

\[
\beta = G(\hat{\theta}_{\text{obs}}; b, \sigma_{\hat{\theta}}) = \Phi\left(\frac{\hat{\theta}_{\text{obs}} - b}{\sigma_{\hat{\theta}}}\right),
\]

for a, b, where G is cumulative distribution for $\hat{\theta}$ and

\[
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x'^2/2} \, dx' \text{ is cumulative of standard Gaussian.}
\]

\[
\rightarrow a = \hat{\theta}_{\text{obs}} - \sigma_{\hat{\theta}} \cdot \Phi^{-1}(1 - \alpha),
\]

\[
b = \hat{\theta}_{\text{obs}} + \sigma_{\hat{\theta}} \cdot \Phi^{-1}(1 - \beta).
\]

Φ^{-1} = quantile of standard Gaussian

(inverse of cumulative distribution, CERNLIB routine GAUSIN).

\[
\rightarrow \Phi^{-1}(1 - \alpha), \Phi^{-1}(1 - \beta) \text{ give how many standard deviations } a, b \text{ are from } \hat{\theta}.
\]
Quantiles of the standard Gaussian

To find the confidence interval for a parameter with a Gaussian estimator we need the following quantiles:

![Graphs showing quantiles.](image)

Usually take a round number for the quantile . . .

<table>
<thead>
<tr>
<th>central</th>
<th>one-sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi^{-1}(1 - \gamma/2)$</td>
<td>$1 - \gamma$</td>
</tr>
<tr>
<td>1</td>
<td>0.6827</td>
</tr>
<tr>
<td>2</td>
<td>0.9544</td>
</tr>
<tr>
<td>3</td>
<td>0.9973</td>
</tr>
</tbody>
</table>

Sometimes take a round number for the coverage probability . . .

<table>
<thead>
<tr>
<th>central</th>
<th>one-sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - \gamma$</td>
<td>$\Phi^{-1}(1 - \gamma/2)$</td>
</tr>
<tr>
<td>0.90</td>
<td>1.645</td>
</tr>
<tr>
<td>0.95</td>
<td>1.960</td>
</tr>
<tr>
<td>0.99</td>
<td>2.576</td>
</tr>
</tbody>
</table>
Confidence interval for mean of Poisson distribution

Suppose \(n \) is Poisson, \(\hat{\nu} = n \), estimate is \(\hat{\nu}_{\text{obs}} = n_{\text{obs}} \),

\[
P(n; \nu) = \frac{\nu^n}{n!} e^{-\nu}, \quad n = 0, 1, \ldots
\]

Minor problem: for fixed \(\alpha, \beta \), confidence belt doesn’t exist for all \(\nu \). No matter. Just solve

\[
\alpha = P(\hat{\nu} \geq \hat{\nu}_{\text{obs}}; a) = 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{a^n}{n!} e^{-a},
\]

\[
\beta = P(\hat{\nu} \leq \hat{\nu}_{\text{obs}}; b) = \sum_{n=0}^{n_{\text{obs}}} \frac{b^n}{n!} e^{-b},
\]

for \(a, b \). Use trick:

\[
\sum_{n=0}^{m} \frac{\nu^n}{n!} e^{-\nu} = 1 - F_{\chi^2}(2\nu; n_d = 2(m + 1))
\]

where \(F_{\chi^2} \) is cumulative chi-square distribution for \(n_d \) dof,

\[
a = \frac{1}{2} F_{\chi^2}^{-1}(\alpha; n_d = 2n_{\text{obs}}),
\]

\[
b = \frac{1}{2} F_{\chi^2}^{-1}(1 - \beta; n_d = 2(n_{\text{obs}} + 1)),
\]

where \(F_{\chi^2}^{-1} \) is the quantile of the chi-square distribution

(CERNLIB routine \texttt{CHISIN}).
Important special case: \(n_{\text{obs}} = 0, \)

\[
\rightarrow \beta = \sum_{n=0}^{0} \frac{b^n e^{-b}}{n!} = e^{-b}, \quad \rightarrow \quad b = -\log \beta.
\]

For upper limit at confidence level \(1 - \beta = 95\% \),

\[
b = -\log(0.05) = 2.996 \approx 3.
\]

Some more useful numbers...
Approximate confidence intervals from $\log L$ or χ^2

Recall trick for estimating σ_θ if $\log L(\theta)$ parabolic:

$$\log L(\hat{\theta} \pm N \sigma_\theta) = \log L_{\text{max}} - \frac{N^2}{2}. $$

Claim: this still works even if $\log L$ not parabolic as an approximation for the confidence interval, i.e. use

$$\log L(\hat{\theta}^{+d}_{-c}) = \log L_{\text{max}} - \frac{N^2}{2},$$

$$\chi^2(\hat{\theta}^{+d}_{-c}) = \chi^2_{\text{min}} + N^2,$$

where $N = \Phi^{-1}(1 - \gamma/2)$ is the quantile of the standard Gaussian corresponding to the confidence level $1 - \gamma$, e.g.

$$N = 1 \rightarrow 1 - \gamma = 0.683.$$

Our exponential example, now with $n = 5$ observations:

$$\hat{\tau} = 0.85^{+0.52}_{-0.30}$$
Interval estimation

1. **The standard deviation as statistical error:** tells how widely estimates $\hat{\theta}$ would be spread if experiment repeated. Needed for LS averaging, but sometimes want asymmetric error.

2. **Classical confidence intervals:** Complicated! Random interval which contains true parameter with fixed probability.

 (a) For a parameter with a Gaussian distributed estimator:

 \[[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}] \] is 68.3\% central confidence interval.

 (b) For the mean of a Poisson distribution: observe n events, set limit on ν. If you observe none, your 95\% upper limit is 3.

3. **Approximate confidence intervals using the likelihood function or χ^2:** take interval where $\log L$ within 1/2 of maximum \rightarrow approximate 68.3\% confidence interval.