Interval estimation

- 1. The standard deviation as statistical error
- 2. Classical confidence intervals
 - (a) for a parameter with a Gaussian distributed estimator
 - (b) for the mean of a Poisson distribution
- 3. Approximate confidence intervals using the likelihood function or χ^2

My experiment: data $x_1, \ldots, x_n \to \text{estimate } \hat{\theta}_{\text{obs}}$

Also estimate variance of $\hat{\theta}$, $\widehat{\sigma^2}_{\hat{\theta}}$, often report something like

$$\hat{\theta}_{\rm obs} \pm \hat{\sigma}_{\hat{\theta}} = 5.73 \pm 0.21$$

What does this really mean?

We know $\hat{\theta}$ will follow some pdf $g(\hat{\theta}; \theta)$,

estimate of θ is 5.73,

estimate of $\sigma_{\hat{\theta}}$ is $0.21 \rightarrow \sigma_{\hat{\theta}}$ measures width of $g(\hat{\theta}; \theta)$

Often $g(\hat{\vec{\theta}}; \vec{\theta})$ is multivariate Gaussian,

$$\hat{\vec{\theta}}, \hat{V} = \hat{\text{cov}}[\hat{\theta}_i, \hat{\theta}_j]$$
 summarize our (estimated) knowledge about $g(\hat{\vec{\theta}}; \vec{\theta}), \rightarrow$ input for error propagation, LS averaging, ...

We could stick with this as the convention for reporting errors, regardless of the pdf of $g(\hat{\theta}; \theta)$.

Sometimes we do (e.g. for PDG averaging), but ...

if $g(\hat{ heta}; heta)$ is Gaussian, then the interval

$$[\hat{ heta}_{
m obs} - \hat{\sigma}_{\hat{ heta}}, \hat{ heta}_{
m obs} + \hat{\sigma}_{\hat{ heta}}]$$

is a 68.3% central confidence interval (more later).

This is the more usual convention, and if $g(\hat{\theta}; \theta)$ not Gaussian, central confidence interval \rightarrow asymmetric errors

Classical confidence intervals (1)

We have an estimator $\hat{\theta}$ for a parameter θ and an estimate $\hat{\theta}_{obs}$, we also need $g(\hat{\theta}; \theta)$ for all θ .

Specify 'upper and lower tail probabilities', e.g. $\alpha = \beta = 0.05$, then, find functions $u_{\alpha}(\theta)$, $v_{\beta}(\theta)$ such that

$$\alpha = P(\hat{\theta} \ge u_{\alpha}(\theta)) = \int_{u_{\alpha}(\theta)}^{\infty} g(\hat{\theta}; \theta) d\hat{\theta} = 1 - G(u_{\alpha}(\theta); \theta),$$

$$\beta = P(\hat{\theta} \le v_{\beta}(\theta)) = \int_{-\infty}^{v_{\beta}(\theta)} g(\hat{\theta}; \theta) d\hat{\theta} = G(v_{\beta}(\theta); \theta).$$

θ̂

The region between $u_{\alpha}(\theta)$ and $v_{\beta}(\theta)$ is called the confidence belt.

Classical confidence intervals (2)

The probability to find $\hat{\theta}$ in the confidence belt, regardless of θ ,

$$P(v_{\beta}(\theta) \le \hat{\theta} \le u_{\alpha}(\theta)) = 1 - \alpha - \beta.$$

Assume $u_{\alpha}(\theta)$, $v_{\beta}(\theta)$ monotonic, then

$$a(\hat{\theta}) \equiv u_{\alpha}^{-1}(\hat{\theta}) ,$$

$$b(\hat{\theta}) \equiv v_{\beta}^{-1}(\hat{\theta})$$
 .

The inequalities

$$\hat{\theta} \geq u_{\alpha}(\theta),$$

$$\hat{\theta} \leq v_{\beta}(\theta),$$

imply

$$a(\hat{\theta}) \geq \theta$$
,

$$b(\hat{\theta}) \leq \theta$$
.

$$\Rightarrow P(a(\hat{\theta}) \ge \theta) = \alpha,$$

$$P(b(\hat{\theta}) \le \theta) = \beta.$$

or together,

$$P(a(\hat{\theta}) \le \theta \le b(\hat{\theta})) = 1 - \alpha - \beta$$
.

Classical confidence intervals (3)

The interval $[a(\hat{\theta}), b(\hat{\theta})]$ is called a confidence interval with confidence level or coverage probability $1 - \alpha - \beta$.

Its quintessential property:

probability to contain true parameter is $1 - \alpha - \beta$.

N.B. the interval is random, the true θ is an unknown constant.

Often report interval [a, b] as $\hat{\theta}_{-c}^{+d}$, i.e. $c = \hat{\theta} - a$, $d = b - \hat{\theta}$.

So what does $\hat{\theta} = 80.25^{+0.31}_{-0.25}$ mean? It does not mean:

 $P(80.00 < \theta < 80.56) = 1 - \alpha - \beta$, but rather: repeat the experiment many times with same sample size, construct interval according to same prescription each time, in $1 - \alpha - \beta$ of experiments, interval will cover θ .

Sometimes only specify α or β , \rightarrow one-sided interval (limit)

Often take
$$\alpha = \beta = \frac{\gamma}{2} \to \text{coverage probability} = 1 - \gamma$$

 \rightarrow central confidence interval

N.B. 'central' confidence interval does not mean the interval is symmetric about $\hat{\theta}$, but only that $\alpha = \beta$.

The HEP error 'convention': 68.3% central confidence interval.

Classical confidence intervals (4)

Usually, we don't construct the confidence belt, but rather solve

$$\alpha = \int_{\hat{\theta}_{\text{obs}}}^{\infty} g(\hat{\theta}; a) d\hat{\theta} = 1 - G(\hat{\theta}_{\text{obs}}; a)$$

$$\beta = \int_{-\infty}^{\hat{\theta}_{\mathrm{obs}}} g(\hat{\theta}; b) d\hat{\theta} = G(\hat{\theta}_{\mathrm{obs}}; b)$$

for interval limits a and b. (Gives same thing.)

 \rightarrow a is hypothetical value of θ such that $P(\hat{\theta} > \hat{\theta}_{obs}) = \alpha$; b is hypothetical value of θ such that $P(\hat{\theta} < \hat{\theta}_{obs}) = \beta$.

Confidence interval for Gaussian distributed estimator

Suppose we have
$$g(\hat{\theta}; \theta) = \frac{1}{\sqrt{2\pi\sigma_{\hat{\theta}}^2}} \exp\left(\frac{-(\hat{\theta} - \theta)^2}{2\sigma_{\hat{\theta}}^2}\right)$$
.

To find confidence interval for θ , solve

$$\alpha = 1 - G(\hat{\theta}_{\text{obs}}; a, \sigma_{\hat{\theta}}) = 1 - \Phi\left(\frac{\hat{\theta}_{\text{obs}} - a}{\sigma_{\hat{\theta}}}\right),$$

$$eta = G(\hat{ heta}_{
m obs}; b, \sigma_{\hat{ heta}}) = \Phi\left(\frac{\hat{ heta}_{
m obs} - b}{\sigma_{\hat{ heta}}}\right),$$

for a, b, where G is cumulative distribution for $\hat{\theta}$ and

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x'^2/2} dx'$$
 is cumulative of standard Gaussian.

$$\rightarrow a = \hat{\theta}_{obs} - \sigma_{\hat{\theta}} \Phi^{-1} (1 - \alpha),$$

$$b = \hat{\theta}_{obs} + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta).$$

 Φ^{-1} = quantile of standard Gaussian

(inverse of cumulative distribution, CERNLIB routine GAUSIN).

$$\to$$
 $\Phi^{-1}(1-\alpha)$, $\Phi^{-1}(1-\beta)$ give how many standard deviations a , b are from $\hat{\theta}$.

Quantiles of the standard Gaussian

To find the confidence interval for a parameter with a Gaussian, estimator we need the following quantiles:

Usually take a round number for the quantile ...

central		one-sided		
$\Phi^{-1}(1-\gamma/2)$	$1-\gamma$	$\Phi^{-1}(1-\alpha)$	$1-\alpha$	
1	0.6827	1	0.8413	
2	0.9544	2	0.9772	
3	0.9973	3	0.9987	

Sometimes take a round number for the coverage probability ...

central		one-sided		
$1-\gamma$	$\Phi^{-1}(1-\gamma/2)$	$1-\alpha$	$\Phi^{-1}(1-\alpha)$	
0.90	1.645	0.90	1.282	
0.95	1.960	0.95	1.645	
0.99	2.576	0.99	2.326	

Suppose n is Poisson, $\hat{\nu} = n$, estimate is $\hat{\nu}_{\text{obs}} = n_{\text{obs}}$,

$$P(n; \nu) = \frac{\nu^n}{n!} e^{-\nu}, \quad n = 0, 1, \dots$$

Minor problem: for fixed α , β , confidence belt doesn't exist for all ν . No matter. Just solve

$$\alpha = P(\hat{\nu} \ge \hat{\nu}_{\text{obs}}; a) = 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{a^n}{n!} e^{-a},$$

$$\beta = P(\hat{\nu} \le \hat{\nu}_{\text{obs}}; b) = \sum_{n=0}^{n_{\text{obs}}} \frac{b^n}{n!} e^{-b},$$

for a, b. Use trick:

$$\sum_{n=0}^{m} \frac{\nu^n}{n!} e^{-\nu} = 1 - F_{\chi^2}(2\nu; n_d = 2(m+1))$$

where F_{χ^2} is cumulative chi-square distribution for $n_{
m d}$ dof,

$$a = \frac{1}{2} F_{\chi^2}^{-1}(\alpha; n_{\rm d} = 2n_{\rm obs}),$$

$$b = \frac{1}{2} F_{\chi^2}^{-1} (1 - \beta; n_d = 2(n_{obs} + 1)),$$

where $F_{\chi^2}^{-1}$ is the quantile of the chi-square distribution (CERNLIB routine CHISIN).

Interval for Poisson mean (continued)

Important special case: $n_{\rm obs} = 0$,

$$\rightarrow \beta = \sum_{n=0}^{0} \frac{b^n e^{-b}}{n!} = e^{-b}, \quad \rightarrow \quad b = -\log \beta.$$

For upper limit at confidence level $1 - \beta = 95\%$,

$$b = -\log(0.05) = 2.996 \approx 3.$$

Some more useful numbers...

$n_{ m obs}$	lower limit a		upper limit b			
	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.01$	$\beta = 0.1$	$\beta = 0.05$	$\beta = 0.01$
0	_	_	_	2.30	3.00	4.61
1	0.105	0.051	0.010	3.89	4.74	6.64
2	0.532	0.355	0.149	5.32	6.30	8.41
3	1.10	0.818	0.436	6.68	7.75	10.04
4	1.74	1.37	0.823	7.99	9.15	11.60
5	2.43	1.97	1.28	9.27	10.51	13.11
6	3.15	2.61	1.79	10.53	11.84	14.57
7	3.89	3.29	2.33	11.77	13.15	16.00
8	4.66	3.98	2.91	12.99	14.43	17.40
9	5.43	4.70	3.51	14.21	15.71	18.78
10	6.22	5.43	4.13	15.41	16.96	20.14

Approximate confidence intervals from $\log L$ or χ^2

Recall trick for estimating $\sigma_{\hat{\theta}}$ if $\log L(\theta)$ parabolic:

$$\log L(\hat{\theta} \pm N\sigma_{\hat{\theta}}) = \log L_{\max} - \frac{N^2}{2}.$$

Claim: this still works even if $\log L$ not parabolic as an approximation for the confidence interval, i.e. use

$$\log L(\hat{\theta}_{-c}^{+d}) = \log L_{\max} - \frac{N^2}{2},$$

$$\chi^2(\hat{\theta}_{-c}^{+d}) = \chi_{\min}^2 + N^2,$$

where $N = \Phi^{-1}(1 - \gamma/2)$ is the quantile of the standard Gaussian corresponding to the confidence level $1 - \gamma$, e.g.

$$N = 1 \rightarrow 1 - \gamma = 0.683.$$

Our exponential example, now with n=5 observations:

$$\hat{\tau} = 0.85^{+0.52}_{-0.30}$$

Interval estimation

- 1. The standard deviation as statistical error: tells how widely estimates $\hat{\theta}$ would be spread if experiment repeated. Needed for LS averaging, but sometimes want asymmetric error.
- 2. Classical confidence intervals: Complicated! Random interval which contains true parameter with fixed probability.
 - (a) For a parameter with a Gaussian distributed estimator: $[\hat{\theta} \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$ is 68.3% central confidence interval.
 - (b) For the mean of a Poisson distribution: observe n events, set limit on ν . If you observe none, your 95% upper limit is 3.
- 3. Approximate confidence intervals using the likelihood function or χ^2 : take interval where log L within 1/2 of maximum \rightarrow approximate 68.3% confidence interval.