Statistical Data Analysis
Discussion notes — week 5

e Problem sheet 2

e Some comments on Machine Learning
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Problem sheet 2

oops, this was not on your PS1

/

Exercise 1 [10 marks|: Consider (as in Problem Sheet 1) the joint pdf for the continuous

random variables z and y
—=  *+y* < R?,
fz,y) =
0 otherwise.

Define the new variables

u = \/$2+y27

v = tan"l(y/z).

That is, u corresponds to the radius and v to the azimuthal angle in plane polar coordinates,
with v > 0 and 0 < v < 27.
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(a) [5] Find the joint pdf of u and v. (Use the inverse of the transformation z = ucosw,

1(3) y = usinwv.) Are u and v independent? Justify your answer.
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1(b)
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(b) [5] Find the marginal pdfs for v and v.
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Exercise 2 [5 marks|: Consider n random variables & = (z1,...,%,) that follow a joint pdf
f(Z) and constants co, c1, - .., Cn.

(a) [1 mark] Starting from the definition of the expectation value for continuous random
variables, show that
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(b) [4 marks] Using the result from (a), show that the variance is

i n
Vv [co + Zcza:z] = Z cicjcov(zi, ;] .
i=1

1,7=1

For the variance above, find what this reduces to in the case where the variables z1,...,z, are
uncorrelated.
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2(b) (cont.)
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Exercise 3 [5 marks]: Consider two random variables z and y and a constant . From the
previous exercise we have (no need to rederive)

Viaz +y] = o*Viz] + V]y] + 2acov(z, y] = a’c; + o, + 2ap0,0y

where o2 = V(z], 0; = V[y], and the correlation coefficient is p = cov[z,y]/0,0,. Using this

result, show that the correlation coefficient always lies in the range —1 < p < 1. (Use the
fact that the variance V]ax + y] is always greater than or equal to zero and consider the cases
a=*+o,/0;.)
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A simple example (2D)

Consider two variables, X; and X,, and suppose we have formulas
for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually notavailable).

f(X,|x,) ~ Gaussian, different means for s/b,
Gaussians have same g, which depends on X,,
f(X,) ~ exponential, same for both s and b,

F(Xg, X0) = F(Xq[xp) f(Xy):

1 2 /0.2 1
— _{II_P'-'S} _fﬂﬂ’ (‘TE) - —:Bgf‘:!t
T1,Tals) = e o
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f(z1,229|b) = (x1—pp)?/20%(22) ~ ,—x2/A
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o(xo) = ooe*2/¢
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Joint and marginal distributions of X4, X,

o~ 8
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Distribution f(x,) same for s, b.
> So does X, help discriminate
el between the two event types?
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Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined
by the likelihood ratio:

f(x1, T2ls)
f($1,$2|b)

t(ﬂ?l,iﬂg) —

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

5 — ) + (s — pn) T
o HEE_Q-TE{'IE

Int

Boundary of optimal critical region will be curve of constant In t,
and this depends on X,!
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Contours of constant MVA output

Exact likelihood ratio Fisher discriminant
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Contours of constant MVA output

Multilayer Perceptron | Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events
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ROC curve

ROC = “receiver operating
characteristic” (term from
signal processing).

Shows (usually) background
rejection (1—¢,) versus

_ signal efficiency &..
-------- Fisher
_____ MLP . :
' Higher curve is better;
—— BDT -a, .
{  usually analysis focused on
02 04 06 08 1 asmall part of the curve.
€
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2D Example: discussion

Even though the distribution of X, is same for signal and
background, X; and X, are not independent, so using x, as an
input variable helps.

Here we can understand why: high values of X, correspond to a
smaller o for the Gaussian of X;. So high X, means that the value
of X; was well measured.

If we don’t consider X,, then all of the X; measurements are
lumped together. Those with large o (low X,) “pollute” the well
measured events with low o (high X,).

Often in HEP there may be variables that are characteristic of
how well measured an event is (region of detector, number of
pile-up vertices,...). Including these variables in a multivariate
analysis preserves the information carried by the well-measured
events, leading to improved performance.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.lbl.gov/

Convolutional Neural Networks

Designed for image data (pixels) — number of input variables =10°.

Intermediate layers include “convolutions” of an area in previous
layer, i.e., transformed pixel is a linear combination of pixels in local
neighborhood in previous layer

— far fewer connections than a fully connected MLP.

_\
Nehhhe

CNNs widely used for image classification.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.Ibl.gov/

Recurrent Neural Networks

Designed for sequential data (time series).

Y Y YVia Vi Vi Yn
h % ho— h1 /11-1:I ht Ihm‘ i}_h“
X X t-1 X, X X

Figure 41.6: Pictorial description of a RNN (on the left) which takes an input and produces
an output at every step with a hidden-to-hidden connection. The right diagram is unrolled over
discrete steps. The yellow box represents a cell: a set of operations unique to each architecture.

RNNs used, e.g., in natural language processing.
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Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant, Graph Neural Networks in Particle Physics,
2021 Mach. Learn.: Sci. Technol. 2 021001, 2021; https://arxiv.org/abs/2007.13681.

Graph Neural Networks

GNNs work with graph-structured input data, e.g., signals
from particles in tracking detector:

Graph = set of nodes

plus set of edges: o @' f .
o
e e ../,q- ‘\,\

Sgpec S
‘.
)&
Part of a larger field called “geometric deep learning”:

CNN is a type of GNN, graph relates pixel to its neighbors.

Transformer is a GNN that uses a mechanism called “attention”,
used in natural language processing (T of ChatGPT).
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