Statistical Data Analysis
Discussion notes — week 8

e Problem sheet 5
e Example of Least Squares for averaging
e Comments on multiple regression

e Least Squares with constraints

G. Cowan / RHUL Physics Statistical Data Analysis / discussion slides week 8



Problem sheet 5

Exercise 1: For this exercise you will do a simple multivariate analysis either with the
python scikit-learn package or using C++ with TMVA from ROOT. The input data
consists of events of two types: signal and background. Three quantities x = (x1, z2, T3) are
are measured for each event. The marginal distributions of each of the three components are
shown in Fig. 1.
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Figure 1: Marginal distributions of the three components of the feature vector x = (x1,x2,z3) for
events of the two classes: signal (y = 1, blue) and background (y = 0, red).
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Problem sheet5/ 1

Exercise 1: The data files supplied contain events of the two classes, signal and background.
Each event is characterized by three quantities, x = (1, z2, z3).

The program provided already contains a Fisher discriminant and allows one to evaluate
for each event the test statistic £(x). Using this we want to select a sample of events enriched
in signal by requiring ¢t > t. with {. = 0. That is, we test for each event the hypothesis that it
is of the background type, and we reject that hypothesis (and thus select as signal) if ¢ > ..
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Problem sheet 5/ 1(a)

1(a) [5 marks] The code you are given calculates already the signal efficiency (the power
of the test), i.e., s = P(t > tc|s). Add the necessary code to find the background efficiency
(the size of the test) ey, = P(t > t.|b).

For each event we test the hypothesis H, : event is of type b

Critical region of test: t>t.

metrics.accuracy_score(y_test, y pred) takes as input an array of y values
(true class labels) y_test (from the test sample) and predicted values y_pred,
and returns the fraction of times the prediction is correct, i.e.,

metrics.accuracy_score(y_bkg test,y bkg pred)

= P(rejectasb | b) = 1-P(classifyasb|b) = 1-P(t>t.|b)
So add the code:
size = 1. - metrics.accuracy_score(y _bkg test, y bkg pred)

For the LDA this gives: size of test of background = 0.23387
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Problem sheet 5/ 1(b)

1(b) [3 marks] What is the signal purity of the selected sample, i.e., P(s|t > t.)? Assume
that the two event classes have equal prior probabilities.

P(t > t.|s)ms
P(t > tc|s)ms + P(t > tc|b)m

signal purity = P(s|t > t.) =

with prior probabilities rr, = r, = 0.5. To get this, add to the code
purity = effSig*piSig / (effSig*piSig + effBkg*piBkg)
where effSig = &5= P(t > t.|s), effBkg = &5= P(t > t.|b).

For the LDA this gives:
power of test with respect to signal = 0.7916

purity of signal sample =0.7719
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Problem sheet 5/ 1(c)

1(c) [8 marks] Modify your program to include a multilayer perceptron with one hidden
layer containing 3 nodes. Using the test data samples, make a histogram of the neural
network’s decision function for both event types. (With scikit-learn, you will need to use
instead the output of the function predict_proba, which is monotonically related to the
MLP output.) Compare to the corresponding histogram from the Fisher discriminant.

Include the code:

clf = MLPClassifier(hidden_layer_sizes=(3,), activation="tanh’,
max_iter=2000, random_state=0)
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Problem sheet 5/ 1(d)

1(d) [4 marks] Select signal events by requiring t\pp > tc with £ = 0.5. What are the signal

and background efficiencies? What is the signal purity assuming equal prior probabilities for
the two event types?

To select events with the MLP, the function predict_proba is used instead of

the decision function. As in (b), to find the purity, use the efficiencies in
Bayes’ theorem:

Signal efficiency = €, = P(t>t_|s)
Background efficiency = eb = P(t>t| b)
Signal purity = P(s|t>t.) = €, 1, /(g Tt + €, 1)

By defining the critical region with a minimum threshold on its value of 0.5,
the program gives:

power of test with respect to signal = 0.8769
size of test of background = 0.1129
purity of signal sample = 0.8859
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Problem sheet 5/ 2 (bonus question)

2(a) Modify your program to include a boosted decision tree with 200 boosting iterations.

2(b) Now repeat this for different numbers of boosting iterations, say, 1, 2, 5, 10, 20, 50,

100, 200, 500, 1000, 10,000, 50,000.

For each classifier, compute the total error rate using a boundary value of t. = 0. That
is, compute the fraction of events (signal and background) that are found on the wrong side
of the boundary. Plot this as a function of the number of boosting iterations for both the
training sample and the statistically independent test sample. Determine roughly the optimal

number of boosting iterations.

The total error rate of a BDT (using
AdaBoost) as a function of the number of
boosting iterations.

The error rate from the training sample
goes to zero after around 10% iterations.
For the test sample, a minimum error rate
of 12.1% is found at 500 iterations, with a
shallow minimum around 12% from 102 to
103 iterations. For more than 103
iterations the error rate increases slowly.
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Problem on Least-Squares Averaging

T T e aary.

S

\'v\v(“-"f’- ’z P aran~ Jo  be wmeasurel

- | — ’;“)I/L":-L
LLX) = ]’:[' o= . 2
= aliay = -1 5 (gAY
2“:' ot . W I
B oo a Xz(;” i = LY ’i)
= { o,

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8



LS averaging (cont.)

Find LS estimator for A:
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LS averaging (cont.)

Find variance of LS estimator:
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LS averaging (cont.)

lllustrate graphical method for variance of LS estimator;
explain how to find p-value for goodness-of-fit.
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LS averaging (cont.)

Find "BLUE” estimator:
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Simple Least Squares fits

A simple way to do least squares curve fitting is with the python
routine curve_fit.

For an introduction to this see the the materials from RHUL's year-
3 introduction to statistics.

This includes a short program simpleFit.py for doing least-squares
fits; also a root/C++ version simpleFit.C.
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http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/ph3010_stat.pdf
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/simpleFit.py
http://www.pp.rhul.ac.uk/~cowan/stat/root/simpleFit/simpleFit.C

Fitting the parameters with Python

The routine routine curve_fit from scipy.optimize can
find LS estimators numerically. To use it you need:

import numpy as np
from scipy.optimize import curve_fit

We need to define the fit function w1 (X; ), e.g., a straight line:

def func(x, *theta):
thetal, thetal = theta
return theta0 + thetalx*x
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Fitting the parameters with Python (2)

The data values (X;, Y;, 0;) need to be in the form of NumPy
arrays, e.g,

X = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
y = np.array([2.7, 3.9, 5.5, 5.8, 6.5, 6.3, 7.7, 8.5, 8.7])
sig = np.array([0.3, 0.5, 0.7, 0.6, 0.4, 0.3, 0.7, 0.8, 0.5])

Start values of the parameters can be specified:
p0 = np.array([1.0, 1.0])
To find the parameter values that minimize (), call curve_fit:
thetaHat, cov = curve_fit(func, x, y, p0, sig, absolute_sigma=True)

Returns estimators and covariance matrix as NumPy arrays.

Need absolute_sigma=True for the fit errors (cov. matrix) to have
desired interpretation.
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http://www-bcf.usc.edu/~gareth/ISL/

Brief intro to multiple regression

Multiple regression™ can be seen as an
extension of curve fitting to the case where
the variable X is replaced by a multi-
dimensional X = (X4,...,X,,), e.g., fitting a
surface. Here suppose the data are points
(X, Vi), 1 =1,...,N (no error bars) and X is
usually a random variable, often called the
explanatory or predictor variable.

X1

Equivalently, we can view it as an extension to classification with

the discrete class label y = 0, 1 replaced by a continuous target y
(and in this context X can also be called the feature vector).

*Note the term "multivariate” regression refers to a vector
target variable y; here we treat only scalary.
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Target (fit) function and loss function

As in the case of curve fitting, we assume some parametric function
of X that represents the mean of the target variable

Ely] = f(x;w)
where W is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (X;, y;), 1 = 1,...,N.

Use these to determine the weights by minimizing a loss function
(analogous to the x?), e.g.,

L(w) = o 3 lys — f(xis w)P
1=1
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https://www.statlearning.com/

Linear regression

In linear regression, the fit function
is of the form

n
f(x;w) = wo + Zwiwi -
1=1

i.e. the problem is equivalent to an
unweighted least-squares fit of a
(hyper-)plane:

Can be generalized to a nonlinear surface in X-space by transforming
X to a set of basis functions ¢,(X),...,¢(X)

FxwW) =wo+ > wipi(x) (still linear in the weights)
=1
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Nonlinear regression

Examples of nonlinear regression include:
MLP (multilayer perceptron) regression
Boosted decision tree regression
Support vector regression

For MLP regression, as with classification, regard the feature vector
as the layer k = 0; i.e., ¢;(9 =

The ith node of hidden layer K is

ORI ( Q +Z () k= 1))

where h is the activation function (tanh, relu, sigmoid,...).
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G. Cowan / RHUL Physics

MLP Regression (cont.)

For the final layer (k=K), in MLP regression (in contrast to
classification), one omits the activation function, i.e.,

Flxsw) =g + 3wyl Y
j=1

where ¢,("1) = are the nodes of the last hidden layer (k = K—1).

For info on other types of multiple regression see, e.g.,

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An
Introduction to Statistical Learning with Applications in R, Springer, 2013;

https://www.statlearning.com/

and the scikit-learn documentation.
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Multiple regression example

Suppose particles with different energies E and angles @ (or

equivalently # = — In tan(6/2) ) enter a calorimeter and create a
particle showers that gives signals in three layers, S;, S, and S,
as well as an estimate of .

Some of the energy leaks through, with increased leakage for
higher energy and more oblique angles (higher 7).

n=-1.5 n=20 n=15
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The goal is to estimate the target y; = E; given feature vectors
Xi = (1, S1, S,,S3); for 1 = 1,...,N training events.
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Energy estimate from sum of signals

~

Naively, one could try just summing the signals: E = s; + so + s3
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Linear regression

See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
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(GeV)

reconstructed energy
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MLP Regression

regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu’

regr.fit(X_train, y_train)
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Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision
tree, support vector regression,...).

Some simple code using scikit-learn and a short project description
can be found here:

https://www.pp.rhul.ac.uk/~cowan/ph3010/ml/regression/
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Parameter estimation with constraints

When estimating parameters 8 = (6,,..., 6,,) one may have
additional information available in the form of K constraints

ck(@) =0, k=1,....K

In some problems it may be possible to define L =M — K new
parameters 74,..., 7 such that every point in y-space satisfies
the constraints. If so, estimate i e.g. with Maximum Likelihood
or Least Squares and then transform back to 8. But it may be
difficult to find new parameters with the required properties.

Suppose the estimators are found by minimizing y*(6). One
can implement the constraints by minimizing instead the

Lagrange function v
LO,\,y) =x%0,y) + D Arck(0)

k=1

with respect to # and the Lagrange multipliers 4 = (44,..., A¢).
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Finding constrained estimators

Define a K+M dimensional vector to contain the parameters and
Lagrange multipliers

¥ = (91,...,91\/[,)\1,...,)\}()
The estimators for y are found from the solutions to

oL
0vi

Fi(v,y) = =0, 1=1,... M+ K

This gives the parameter values that minimize y?(6) subject to the
constraints.
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Covariance matrix of estimators

To find the covariance matrix of the estimators, find the solutions
Y to the equations above when the data Yy are equal to their

expected values (Yy) (in practice estimate with the observed values).
This gives estimators

4y)~4+C(y—(y) where C=-A"'B

and where A@jz[ ] and Bz'j:[ ]

Using this approximation for ¥(¥), find the covariance matrix
U;j = cov[¥i, %] using error propagation, i.e.,

U=cCcvcT where Vij = COV[%, ’yj]
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Derivation of formula for covariance

Starting from the equations F;(v,y) = 0, i = 1,..., K + M, consider two solutions: 4
corresponding to data y and 4 corresponding to (y). Expanding F;(%,y) to first order in 4

and y about 4 and (y) gives

The terms F;(y, %) and F;((y),”) are both zero because both pairs of arguments are assumed
to be solutions to F; = 0. Dropping these terms, the equation can be rewritten in matrix

form 4 ~ 4 + C(y — (y)), where C = —A~1B .

For more details see the PDG review on statistics Sec. 40.2.4 at
pdg.1lbl.gov orthe note:

https://www.pp.rhul.ac.uk/~cowan/stat/notes/lscon.pdf
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Example of constrained estimators

Suppose we have measurements Yy, Y, and y; of the three angles
0., 0,, 05 of a triangle.

Model as independent and Gaussian: y; ~ Gauss(é;, o).

To find the estimators, one could replace 6; = — 6, — 6, and
minimize y%(6,,6,) .

3
. L i —0i)°
Alternatively, minimize £(6,X) =" v — S A+ 65+ 05 — )

1=1

1 |
— 0p = §(2y1—yz—ys+7r) 0y = g(_yl+292_93‘|‘77)

N 1 A 2
93=§(—y1—y2—|—2y3—|—7r) /\:@(y1+y2+y3_ﬂ')

A 2
Variances of estimates reduced by constraint: V[f] = 502 ,0=1,2,3
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