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Statistical Data Analysis
Discussion notes – week 8 

• Problem sheet 5

• Example of Least Squares for averaging

• Comments on multiple regression

• Least Squares with constraints
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Problem sheet 5
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Problem sheet 5 / 1
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Problem sheet 5 / 1(a)

For each event we test the hypothesis H0 : event is of type b

Critical region of test:  t > tc

metrics.accuracy_score(y_test, y_pred) takes as input an array of y values 
(true class labels) y_test (from the test sample) and predicted values y_pred, 
and returns the fraction of times the prediction is correct, i.e.,  

metrics.accuracy_score(y_bkg_test, y_bkg_pred)

  = P(reject as b | b)    = 1 – P(classify as b | b)    =    1 - P(t > tc | b)

So add the code:

size = 1. - metrics.accuracy_score(y_bkg_test, y_bkg_pred)

For the LDA this gives:  size of test of background = 0.23387
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Problem sheet 5 / 1(b)

with prior probabilities πs = πb = 0.5. To get this, add to the code

 purity = effSig*piSig / (effSig*piSig + effBkg*piBkg)

where

For the LDA this gives:

 power of test with respect to signal = 0.7916

 purity of signal sample = 0.7719
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Problem sheet 5 / 1(c)

Include the code:

clf = MLPClassifier(hidden_layer_sizes=(3,), activation='tanh',
max_iter=2000, random_state=0)

Histogram of the MLP output 
(as given by predict_proba):
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Problem sheet 5 / 1(d)

To select events with the MLP, the function predict_proba is used instead of 
the decision function. As in (b), to find the purity, use the efficiencies in 
Bayes’ theorem:

 Signal efficiency = εs = P(t>tc|s)
 Background efficiency = εb = P(t>tc|b)
 Signal purity = P(s|t>tc) = εs πs /(εs πs + εb πb)

By defining the critical region with a minimum threshold on its value of 0.5, 
the program gives:

 power of test with respect to signal = 0.8769
 size of test of background = 0.1129
 purity of signal sample = 0.8859
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Problem sheet 5 / 2 (bonus question)

The total error rate of a BDT (using 
AdaBoost) as a function of the number of 
boosting iterations. 

The error rate from the training sample 
goes to zero after around 104 iterations. 
For the test sample, a minimum error rate 
of 12.1% is found at 500 iterations, with a 
shallow minimum around 12% from 102 to 
103 iterations. For more than 103 
iterations the error rate increases slowly.
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Problem on Least-Squares Averaging
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LS averaging (cont.)

Find LS estimator for λ:
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LS averaging (cont.)

Find variance of LS estimator:
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LS averaging (cont.)

Illustrate graphical method for variance of LS estimator;
explain how to find p-value for goodness-of-fit.
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LS averaging (cont.)

Find ”BLUE” estimator:
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Simple Least Squares fits

A simple way to do least squares curve fitting is with the python 
routine curve_fit.

For an introduction to this see the the materials from RHUL's year-
3 introduction to statistics.

This includes a short program simpleFit.py for doing least-squares 
fits; also a root/C++ version simpleFit.C.

http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/ph3010_stat.pdf
http://www.pp.rhul.ac.uk/~cowan/ph3010/statistics/2020/simpleFit.py
http://www.pp.rhul.ac.uk/~cowan/stat/root/simpleFit/simpleFit.C
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Fitting the parameters with Python

The routine routine curve_fit from scipy.optimize can 
find LS estimators numerically.   To use it you need:

We need to define the fit function μ (x; θ), e.g., a straight line:
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The data values (xi, yi, σi) need to be in the form of NumPy
arrays, e.g,

Start values of the parameters can be specified: 

To find the parameter values that minimize χ2(θ), call curve_fit:

Returns estimators and covariance matrix as NumPy arrays.

Need absolute_sigma=True for the fit errors (cov. matrix) to have
desired interpretation.

Fitting the parameters with Python (2)
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Brief intro to multiple regression
Multiple regression* can be seen as an 
extension of curve fitting to the case where 
the variable x is replaced by a multi-
dimensional x = (x1,...,xn), e.g., fitting a 
surface.  Here suppose the data are points 

(xi, yi), i = 1,...,N (no error bars) and x is 
usually a random variable, often called the 
explanatory or predictor variable.

http://www-bcf.usc.edu/~gareth/ISL/ 

Equivalently, we can view it as an extension to classification with
the discrete class label y = 0, 1 replaced by a continuous target y 
(and in this context x can also be called the feature vector).

*Note the term ”multivariate” regression refers to a vector 
target variable y; here we treat only scalar y.



18G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

Target (fit) function and loss function

As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (xi, yi), i = 1,...,N.

Use these to determine the weights by minimizing a loss function
(analogous to the χ2), e.g.,
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Linear regression

In linear regression, the fit function 
is of the form

i.e. the problem is equivalent to an 
unweighted least-squares fit of a 
(hyper-)plane:

https://www.statlearning.com/

Can be generalized to a nonlinear surface in x-space by transforming 
x to a set of basis functions φ1(x),...,φm(x)

(still linear in the weights)
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Nonlinear regression
Examples of nonlinear regression include:

 MLP (multilayer perceptron) regression

 Boosted decision tree regression

 Support vector regression

For MLP regression, as with classification, regard the feature vector 
as the layer k = 0; i.e., φi

(0) = xi.

The ith node of hidden layer k is

where h is the activation function (tanh, relu, sigmoid,...).
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MLP Regression (cont.)

For the final layer (k=K), in MLP regression (in contrast to 
classification), one omits the activation function, i.e.,

where φj
(K−1) = are the nodes of the last hidden layer (k = K−1).

For info on other types of multiple regression see, e.g., 

https://www.statlearning.com/

and the scikit-learn documentation.
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Multiple regression example
Suppose particles with different energies E and angles θ (or 
equivalently η = − ln tan(θ/2) ) enter a calorimeter and create a 
particle showers that gives signals in three layers, s1, s2 and s3, 
as well as an estimate of η.

Some of the energy leaks through, with increased leakage for 
higher energy and more oblique angles (higher η).

The goal is to estimate the target yi = Ei given feature vectors 
xi = (η, s1, s2,s3)i for i = 1,...,N training events.
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Energy estimate from sum of signals

Naively, one could try just summing the signals:

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing 
amounts of the energy leak 
through undetected.
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Linear regression
See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

Average relative resolution 16.7%.



25G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 8

MLP Regression

regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu'
regr.fit(X_train, y_train)

Better resolution (10%), here significant bias at low energies.
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Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero 
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample 
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision 
tree, support vector regression,...).

Some simple code using scikit-learn and a short project description 
can be found here:

https://www.pp.rhul.ac.uk/~cowan/ph3010/ml/regression/
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Parameter estimation with constraints
When estimating parameters θ = (θ1,..., θM) one may have 
additional information available in the form of K constraints

In some problems it may be possible to define L = M − K new 
parameters η1,..., ηL such that every point in η-space satisfies 
the constraints.  If so, estimate η e.g. with Maximum Likelihood 
or Least Squares and then transform back to θ.  But it may be 
difficult to find new parameters with the required properties.  

Suppose the estimators are found by minimizing χ2(θ).   One 
can implement the constraints by minimizing instead the 
Lagrange function

with respect to θ and the Lagrange multipliers λ = (λ1,..., λK).
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Finding constrained estimators

Define a K+M dimensional vector to contain the parameters and 
Lagrange multipliers

The estimators for γ are found from the solutions to 

This gives the parameter values that minimize χ2(θ) subject to the 
constraints.
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Covariance matrix of estimators
To find the covariance matrix of the estimators, find the solutions    
     to the equations above when the data y are equal to their
expected values ⟨y⟩ (in practice estimate with the observed values).  
This gives estimators

Using this approximation for          , find the covariance matrix
                            using error propagation, i.e.,

where

where

and where ,
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Derivation of formula for covariance

For more details see the PDG review on statistics Sec. 40.2.4 at 
pdg.lbl.gov or the note:

https://www.pp.rhul.ac.uk/~cowan/stat/notes/lscon.pdf
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Example of constrained estimators
Suppose we have measurements y1, y2 and y3 of the three angles 
θ1, θ2, θ3 of a triangle.

Model as independent and Gaussian:  yi ~ Gauss(θi, σ).

To find the estimators, one could replace θ3 = π − θ1 − θ2 and 
minimize χ2(θ1,θ2) .

→

Alternatively, minimize 

Variances of estimates reduced by constraint:
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