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Statistical Data Analysis
Lecture 10-1

• Upper limits on a Poisson rate parameter

– Frequentist approach

– Bayesian approach
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Frequentist upper limit on Poisson parameter

Consider again observing n ~ Poisson(s + b), with both s, b ≥ 0.

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL.

Relevant alternative is s = 0 (critical region at low n)

p-value of hypothesized s is P(n ≤ nobs; s, b)

Upper limit sup at CL = 1 – α found from
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n ~ Poisson(s+b):  frequentist upper limit on s

For low fluctuation of n, formula can give negative result for sup; 
i.e. confidence interval is empty;  all values of s ≥ 0 have ps ≤ α.

2.996   →
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Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
 We already knew s ≥ 0 before we started; can’t use negative 
 upper limit to report result of expensive experiment!

Statistician:
 The interval is designed to cover the true value only 90%
 of the time — this was clearly not one of those times.

Not uncommon dilemma – note probability to reject very small s 

(to which one has no sensitivity) is slightly greater than α.
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10−4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the no-
signal hypothesis (s = 0) sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.

Mean upper limit = 4.44

Report both observed and expected limits;
other types of limits (Bayesian, CLs, F-C) can mitigate the issue.
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(θ|x) to give interval with any desired
probability content.  

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from



8G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Bayesian prior for Poisson parameter

Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0.

Could try to reflect ‘prior ignorance’ with e.g. 

Not normalized; can be OK provided p(n|s) dies off quickly for large s.

Not invariant under change of parameter — if we had used instead a 
flat prior for a nonlinear function of s, then this would imply a non-
flat prior for s.

Doesn’t really reflect a reasonable degree of belief, but often used as 
a point of reference; or viewed as a recipe for producing an interval 
whose frequentist properties can be studied (e.g., coverage 
probability, which will depend on true s). 
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Bayesian upper limit with flat prior for s

Put Poisson likelihood and flat prior into Bayes’ theorem:

Normalize to unit area:

Upper limit sup determined by

upper incomplete
gamma function
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Bayesian interval with flat prior for s

Solve to find limit sup:

For special case b = 0, Bayesian upper limit with flat prior
numerically same as one-sided frequentist case (‘coincidence’). 

where 
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Bayesian interval with flat prior for s

For b > 0 Bayesian 
limit is everywhere 
greater than the (one 
sided) frequentist 
upper limit.

For b = 0 , Bayesian 
and frequentist upper 
limits come out equal.

Never goes negative.  
Doesn’t depend on b 
if n = 0.
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Statistical Data Analysis
Lecture 10-2

• Discussion on Bayesian prior probabilities

• Jeffreys’ prior

• Example:  Poisson mean
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Priors from formal rules 
Last time we took the prior for a Poisson mean to be constant to 
reflect a lack of prior knowledge; we noted this was not invariant 
under change of parameter.

Because of difficulties in encoding a vague degree of belief
in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

 Often called “objective priors” 
 Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).   

In Objective Bayesian analysis, can use the intervals in a
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce
an interval with a given coverage probability. 



14G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Priors from formal rules (cont.) 

For a review of priors obtained by formal rules see, e.g.,

Formal priors have not been widely used in Particle Physics, but 
there has been interest in this direction, especially the reference 
priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, Reference analysis of the signal + background model 
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270.
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Jeffreys prior

According to Jeffreys’ rule, take prior according to

where

is the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters in the following sense:

Start with the Jeffreys prior for θ:  πθ(θ) ~ √(det I(θ))

Use it in Bayes’ theorem to find:
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Jeffreys prior (2)

Now consider a function η(θ).  The posterior for η is

Alternatively, start with η and use its Jeffreys’ prior:

Use this in Bayes’ theorem:

One can show that Jeffreys’ prior results in the same P(η|x) in 
both cases.  For details (single-parameter case) see:
https://www.pp.rhul.ac.uk/~cowan/stat/notes/JeffreysInvariance.pdf
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Jeffreys prior for Poisson mean

Suppose n ~ Poisson(μ).  To find the Jeffreys’ prior for μ,

So e.g. for μ = s + b, this means the prior π(s) ~ 1/√(s + b),  which 
depends on b.  But this is not designed as a degree of belief  about s.
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Posterior pdf for Poisson mean

From Bayes’ theorem, 

Flat, π(μ) = const.

Jeffreys, π(μ) ~ 1/√μ

In both cases, posterior is special case of gamma distribution.



19G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Upper limit for Poisson mean

Flat prior:

Jeffreys prior:

= 7.75

= 7.03

where P−1 is the inverse of the normalized lower incomplete 
gamma function (see scipy.special)

To find upper limit at CL = 1−α, solve

n=3,

CL=0.95
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Statistical Data Analysis
Lecture 10-3

• Systematic uncertainties and nuisance parameters

• Profile likelihood
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Systematic uncertainties and nuisance parameters

In general, our model of the data is not perfect:

x 

P
 (x

|μ
)

model:  

truth:

Can improve model by including 
additional adjustable parameters.

Nuisance parameter  systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true”.  

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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Example:  fitting a straight line

Data:

Model: yi independent and all follow yi  ~ Gauss(μ(xi ), σi )

 

assume xi and σi known.

Goal:  estimate θ0 

Here suppose we don’t care 
about θ1 (example of a 
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the yi are assumed independent, so the
likelihood function is a product of Gaussians:

Maximizing the likelihood is here equivalent to minimizing

i.e., for Gaussian data, ML same as Method of Least Squares (LS)
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θ1 known a priori

For Gaussian yi, ML same as LS

Minimize χ2 → estimator

Come up one unit from     

to find 
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

ML (or LS) fit of θ0 and θ1
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The information on θ1

improves accuracy of

If we have a measurement t1 ~ Gauss (θ1, σt1
)
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Profiling

The lnL = lnLmax – ½ contour in the (θ0, θ1) plane is a confidence 
region at CL = 39.3%.

Furthermore if one wants to know only about, say, θ0, then the
interval in θ0  corresponding to lnL = lnLmax – ½ is a confidence 
interval at CL = 68.3% (i.e., ±1 std. dev.).

I.e., form the interval for θ0 
using

where θ1 is replaced by its 
“profiled” value
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Profile Likelihood

Suppose we have a likelihood L(μ,θ) = P(x|μ,θ) with  N 
parameters of interest μ = (μ1,..., μN) and M nuisance parameters 
θ = (θ1,..., θM).  The “profiled” (or “constrained”) values of θ are:

and the profile likelihood is:

The profile likelihood depends only on the parameters of 
interest; the nuisance parameters are replaced by their profiled 
values.

The profile likelihood can be used to obtain confidence 
intervals/regions for the parameters of interest in the same way 
as one would for all of the parameters from the full likelihood.
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Profile Likelihood Ratio – Wilks theorem

Goal is to test/reject regions of μ space (param. of interest).

Rejecting a point μ should mean pμ ≤ α for all possible values of the 
nuisance parameters θ.

Test μ using the “profile likelihood ratio”:

Let tμ = −2 ln λ(μ).  Wilks’ theorem says in large-sample limit:

where the number of degrees of freedom is the number of 
parameters of interest (components of μ).  So p-value for μ is
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Profile Likelihood Ratio – Wilks theorem (2)

The recipe to get confidence regions/intervals for the parameters 
of interest at CL = 1 – α is thus the same as before, simply use the 
profile likelihood:

If we have a large enough data sample to justify use of the
asymptotic chi-square pdf, then if μ is rejected, it is rejected for 
any values of the nuisance parameters.

where the number of degrees of freedom N for the chi-square 
quantile is equal to the number of parameters of interest.

If the large-sample limit is not justified, then use e.g. Monte 
Carlo to get distribution of tμ.
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Statistical Data Analysis
Lecture 10-4

• Bayesian parameter estimation

• Marginalization of posterior pdf

• Markov Chain Monte Carlo
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Reminder of Bayesian approach

In Bayesian statistics we can associate a probability with
a hypothesis, e.g., a parameter value θ.

        Interpret probability of θ as ‘degree of belief’ (subjective).

Need to start with ‘prior pdf’ π(θ), this reflects degree 
of belief about θ before doing the experiment.

        Our experiment has data x, → likelihood p(x|θ).

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Posterior pdf  p(θ|x) contains all our knowledge about θ.
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Bayesian approach:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

We need to associate prior probabilities with θ0 and θ1, e.g.,

Likelihood for control
measurement t1

← ‘non-informative’, in any
case much broader than L(θ0)

Ur = “primordial”
         prior 

← suppose knowledge of θ0 has 
no influence on knowledge of θ1

prior after t1,
before y
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Bayesian example:  yi ~ Gauss(μ(xi;θ0,θ1), σi) 

Putting the ingredients into Bayes’ theorem gives:

posterior    ∝                  likelihood         ✕       prior

Note here the likelihood only reflects the measurements y.

The information from the control measurement t1 has been put 
into the prior for θ1.

We would get the same result using the likelihood P(y,t|θ0,θ1) and 
the constant  “Ur-prior” for θ1.

Here posterior only found as a proportionality.
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Marginalizing the posterior pdf

For this example, numbers come out same as in frequentist 
approach, but interpretation different.  

We then integrate (marginalize)  p(θ0, θ1 | y) to find p(θ0  | y):

In this example we can do the integral (rare).  We find

(same as for MLE)
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Marginalization with MCMC

Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

 cannot use for many applications, e.g., detector MC;
 effective stat. error greater than if all values independent .

Basic idea:  sample multidimensional θ but look only at 
distribution of parameters of interest. 
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf p(θ) up to a proportionality 
constant, generate a sequence of points θ1 , θ2 , θ3 ,... 

1)  Start at some point 

2)  Generate  

Proposal density q(θ; θ0 )
e.g. Gaussian centred
about θ0

3)  Form test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

Still works if p(θ) is known only as a proportionality, which is 
usually what we have from Bayes’ theorem: p(θ|x) ∝ p(x|θ) π(θ).

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:  q(θ; θ0 ) = q(θ0; θ )

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher p(θ), take it;  

if not, only take the step with probability p(θ)/p(θ0).

If proposed step rejected, repeat the current point.
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Example:  posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Normalized histogram of θ0 gives 
its marginal posterior pdf:
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of θ1 but rather, 
an “expert” says it should be positive and not too much  greater 
than 0.1 or so, i.e., something like

From this we obtain (numerically) the posterior pdf for θ0:

This summarizes all 
knowledge about θ0.

Look also at result from 
variety of  priors.
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Extra slides
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The exercise is described in

https://www.pp.rhul.ac.uk/~cowan/stat/exercises/bayesFit/

in the file bayes_fit_exercise.pdf.

The program is in bayesFit.py or bayesFit.ipynb.

This exercise treats the same fitting problem as seen with 
maximum likelihood, here using the Bayesian approach.

Bayes’ theorem is used to find the posterior pdf for the 
parameters, and these are summarized using the posterior mode 
(MAP estimators).

The posterior pdf is marginalized over the nuisance parameters 
using Markov Chain Monte Carlo.

Bonus exercise:  Bayesian parameter estimation
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Gaussian signal on exponential background

Same pdf as from mlFit.py (see tutorial 1) with n = 400 
independent values of x from 

At first take prior pdf constant for all parameters subject to 
0 ≤ θ ≤ 1, σ > 0, ξ > 0 (later try different priors).

Posterior pdf for parameters λ =  (θ, μ, σ, ξ) from Bayes theorem,

where 



44G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 10

Data and MAP estimates

Maximize posterior with minuit (minimize – ln p(λ|x)).

Standard deviations from 
minuit correspond to 
approximating posterior as 
Gaussian near its peak.

Here priors constant so 
MAP estimates same as 
MLE, covariance matrix 
Vij = cov[θi, θj] also same.
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A look at bayesFit.py
Find maximum of posterior with iminuit (minimize – ln p(λ|x)), 

similar to maximum likelihood:

# Negative log-likelihood
def negLogL(par):
  fx = f(xData, par)
  return -np.sum(np.log(fx))

# Prior pdf
def prior(par):
  theta   = par[0]
  mu    = par[1]
  sigma   = par[2]
  xi    = par[3]
  pi_theta = 1. if theta >= 0. and theta <= 1. else 0.
  pi_mu   = 1. if mu >= 0. else 0.
  pi_sigma = 1. if sigma > 0. else 0.
  pi_xi   = 1. if xi > 0. else 0.
  piArr = np.array([pi_theta, pi_mu, pi_sigma, pi_xi])
  pi = np.product(piArr[np.array(parfix) == False])  # exclude fixed par
  return pi
 

# Negative log of posterior pdf
def negLogPost(par):
  return negLogL(par) - np.log(prior(par))

minimize with iminuit
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Metropolis-Hastings algorithm in bayesFit.py
# Iterate with Metropolis-Hastings algorithm
chain = [np.array(MAP)]     # start point is MAP estimate
numIterate = 10000
numBurn = 100
numAccept = 0
print("Start MCMC iterations: ", end="")
while len(chain) < numIterate:
  par = chain[-1]
  log_post = -negLogL(par) + np.log(prior(par))
  par_prop = np.random.multivariate_normal(par, cov_prop)
  if prior(par_prop) <= 0:
    chain.append(chain[-1])   # never accept if prob<=0.
  else:
    log_post_prop = -negLogL(par_prop) + np.log(prior(par_prop))
    alpha = np.exp(log_post_prop - log_post)
    u = np.random.uniform(0, 1)
    if u <= alpha:
      chain.append(par_prop)
      numAccept += 1
    else:
      chain.append(chain[-1])
    if len(chain)%(numIterate/100) == 0:
      print(".", end="", flush=True)
chain = np.array(chain)

Try increasing number 
of iterations (10k runs 
in about 20 s).
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Exercises on Bayesian parameter estimation (a)

1a)  Run bayesFit.py, look at the plots
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Exercises on Bayesian parameter estimation (b,c)

1b)  Investigate effect of data sample size, fixing parameters and 
length of MCMC chains.

1c)  Investigate changing the prior
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Exercises on Bayesian parameter estimation (d)

1d)  Include auxiliary measurement to constrain ξ

1e)  Investigate point and interval estimates for θ 
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MCMC trace plots
Take θ as parameter of interest, rest are nuisance parameters.

Marginalize by sampling posterior pdf with Metropolis-Hastings.

Gaussian proposal pdf, 
covariance U = sV, 

s = (2.38)2/Npar = 1.41,  
gives acceptance 
probability ~ 0.24.

See, e.g., 
http://probability.ca/jeff
/ftpdir/galinart.pdf

Here 10 000 iterations 
(should use more).
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Marginal distributions

Note long tails.

Interpretation: data 
distribution can be 
approximated by  
Gaussian term only,  
(θ large, μ small) with 
large width (σ ~ 4-8) 
and a narrow 
exponential (ξ ~ 1-3).

MAP estimates shown with vertical bars
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Autocorrelation versus lag
MCMC samples are not independent, autocorrelation function 
= correlation coefficient of sample xi with xi+l as a function of 
the lag, l, where x = any of θ, μ, σ, ξ minus its mean:

Effective sample size

In stat. error estimates

See, e.g., https://mc-stan.org/docs/reference-manual/effective-sample-size.html
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MCMC trace plots

Increase number of iterations to 100 000.

Regions of parameter 
space now sampled 
multiple times. 
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Auxiliary measurement for ξ

Suppose we have an auxiliary measurement u ~ Gauss(ξ, σu) 

with σu = 0.5 and we observe u = 5.

Marginals closer to Gaussian, ACF falls more quickly to ~zero.

Build into likelihood:
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Ways to summarize the posterior

Point estimates:

 Posterior mode (MAP, coincides with MLE for constant prior).

 Posterior median (invariant under monotonic transformation 
of parameter).

 Posterior mean; coincides with above in large-sample limit.

Intervals:

 Highest Probability Density (HPD) interval, shortest for a 
given probability content, not invariant under param. trans.

 Central credible intervals, equal upper and lower tail areas, 
e.g., α/2 for CL = 1 – α.

 Point estimate +/- standard deviation, std. dev. from MCMC 
sample or by approximating core of posterior as Gaussian 
(from minuit); coincides with above in large-sample limit.
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Types of intervals

HPD = Highest Posterior Density

Equal tail (central) from posterior

Classical (frequentist)

G. Casella and R. Berger, Statistical Inference, 2002
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Correlation plots and marginal distributions

Estimates/intervals for theta:
MCMC acceptance fraction =  0.3737
Posterior mode (MAP estimate)   =  0.197936
Posterior mean                  =  0.351234
Posterior median                =  0.250764
MAP +/- sigmaMAP (from minuit)  =  [0.140056, 0.255816]
Posterior mean +/- sigmaMCMC    =  [0.118503, 0.583964]
68.3% central credible interval =  [0.158557, 0.685847]
68.3% HPD interval              =  [0.093997, 0.392642]
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Correlation plots and marginal distributions 
using auxiliary measurement for ξ

Estimates/intervals for theta:
MCMC acceptance fraction =  0.3516
Posterior mode (MAP estimate)   =  0.200077
Posterior mean                  =  0.224898
Posterior median                =  0.212835
MAP +/- sigmaMAP (from minuit)  =  [0.149282, 0.250873]
Posterior mean +/- sigmaMCMC    =  [0.148481, 0.301314]
68.3% central credible interval =  [0.156736, 0.291246]
68.3% HPD interval              =  [0.137607, 0.267077]
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