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Statistical Data Analysis
Lecture 11-1

• Bayesian model selection

• Bayes factors
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Bayesian model selection
Fundamentally the probability of a hypothesis Hi in the Bayesian 
approach is given by its posterior probability given the data:  
P(Hi|x).

Finding this requires assignment of prior probabilities to all 
hypotheses that are considered.

We can give the posterior odds (ratio of probabilities) for any pair 
of hypotheses Hi and Hj  (use Bayes’ theorem; factors of P(x) 
cancel):

posterior odds prior oddsBayes factor

See:  Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.
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The Bayes factor

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of Hi over Hj. and can be used 
much like a p-value (or Z value).

The Jeffreys scale, analogous to the 5σ rule in Particle Physics:

 B10   Evidence against H0

 --------------------------------------------
 1 to 3  Not worth more than a bare mention
 3 to 20  Positive
 20 to 150 Strong
 > 150  Very strong

The Bayes factor Bij is the likelihood ratio of the two hypotheses:

= posterior odds if one takes
prior odds equal to one.
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Marginal likelihood (evidence)

If the model Hi contains internal parameters θi, then these must 
be characterized by a prior pdf πi(θi |Hi) and marginalized:

This is called the “marginal likelihood” or “evidence” of Hi.

It is independent of the overall prior probability of Hi

but it depends on the prior pdf for the model’s internal 
parameters θi :
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Bayes factor for models with internal parameters

The Bayes factor is thus the ratio of marginal likelihoods for 
the two models:

Simplifying the notation, the numerator and denominator are 
both of the form

For high-dimensional θ these integrals can be very difficult to 
compute (more on this later).
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Priors for Bayes factors
Prior pdfs for the marginal likelihoods used in Bayes factors
cannot be improper, i.e., they cannot be defined only up to an 
arbitrary normalization constant, in which case Bij would not be 
well defined.

Suppose we try to take a ”non-informative” prior to be constant
out to some large cut-off, in the hope that the Bayes factor will 
decouple from it:

In such cases we find that the Bayes factor remains sensitive to 
the cut-off even for a → ∞.  

So all priors used for Bayes factors must reflect a meaningful 
degrees of uncertainty about the parameters.
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Bayes factor for Poisson counting experiment

Suppose n ~ Poisson(s + b) with b known.  We want to compare

The likelihoods of H0  and H1 are
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Suppose the prior pdf for the parameter s in H1 is:

The posterior probability for s given n is, assuming H1,

Bayes factor for Poisson counting experiment (2)

(0 ≤ s ≤ smax)

(0 ≤ s ≤ smax)

γ = lower 
incomplete
gamma 
function
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In the limit smax → ∞ this goes to

where 

is the lower incomplete gamma function.

Thus the posterior pdf for s given n under assumption of H1

decouples from smax in the limit smax → ∞, and hence we
can use this limiting case e.g. for finding an upper limit 
(credibility interval) for s.

Bayes factor for Poisson counting experiment (3)
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The hypothesis H0 has no internal parameters so its marginal 
likelihood is simply m0 = L(n| H0).  

The marginal likelihood of H1 is

Bayes factor for Poisson counting experiment (4)
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Bayes factor for Poisson counting experiment (5)

So the Bayes factor is

Example:  b = 2, n = 8

As smax increases the data 
start to  favour H1.

As smax increases further, 
the larger volume of H1’s 
parameter space penalizes 
it (Ockham’s razor).
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Ockham
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Statistical Data Analysis
Lecture 11-2

• Numerical determination of Bayes factors
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

 Harmonic Mean (and improvements)
 Importance sampling
 Parallel tempering (~thermodynamic integration)
 Nested Sampling (MultiNest), ...
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Harmonic mean estimator
E.g., consider only one model and write Bayes theorem as:

π(θ) is normalized to unity so integrate both sides,

Therefore sample θ from the posterior via MCMC and estimate m 
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation

Called the “worst Monte Carlo method ever”
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  A variant (cf. Gelfand and Dey):

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f (θ):

Integrate over θ :

Improved convergence if tails of f (θ) fall off faster than L(x|θ)π(θ)

Note harmonic mean estimator is special case f (θ) = π(θ).
.
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Adaptive Harmonic Mean Integration

A. Caldwell et al., International Journal of Modern 
Physics A Vol. 35, No. 24 (2020) 2050142

Want to compute 

Define integral over subvolume Δ of Ω with volume VΔ

(Ω = support of f)

E.g.  f  (λ) = L(λ) π(λ) = unnormalized target density; we can 
sample from this with MCMC.
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Adaptive Harmonic Mean Integration (2)

Use these to estimate I:

“The task of estimating our integral, therefore reduces to choosing one or several
subspaces ∆ — typically small regions around local modes of f (λ). The full space
Ω over which the integration ought to be performed can be large or even infinite,
while this does not affect the outcome of our integral estimate.”

        A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Sample λ from f  (λ) using MCMC, estimate 
r = IΔ/I with fraction of points found in Δ:

If f  (λ) not small in Δ, then we can find IΔ from harmonic mean:
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Adaptive Harmonic Mean Integration (3)
Testing AHMI with multimodal multidimensional Cauchy pdf

A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Challenging pdf because of long tails.

Good results for up to 7 dimensions for 
MCMC sample size of 106.

Software:  Bayesian Analysis Toolkit

https://github.com/bat/BAT.jl
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Importance sampling

Need pdf f (θ) which we can evaluate at arbitrary θ and also
sample with MC.

The marginal likelihood can be written

Best convergence when f (θ) approximates shape of L(x|θ)π(θ).

Use for f (θ) e.g. multivariate Gaussian with mean and covariance
estimated from posterior.

Sample θ ~ f (θ), compute average of L(x|θ) π(θ) / f (θ).
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Nested sampling

J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006) 

We want to compute 

Can add up portions of X  (equivalently, θ) space in any order.  Use

Write inverse function as so that the desired result is

Elements of θ space are sorted
by decreasing likelihood.

X near 1 means low λ, all of
θ space included.
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Nested sampling (2)
J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006) 

The evidence Z
is the area under
the curve of L(X).

Computational challenge is to sample θ space from prior subject 
to constraint L(θ) > λ.  Software:  MultiNest

Farhan Feroz, Mike Hobson, Mon. Not. Roy. Astron. Soc., 384, 2, 449-463 (2008); 
arXiv:0704.3704,

F. Feroz, M.P. Hobson, M. Bridges, Mon. Not. Roy. Astron. Soc. 398: 1601-1614,2009; 
arXiv:0809.3437 

F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, arXiv:1306.2144
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Statistical Data Analysis
Lecture 11-3

• Statistical models with uncertain error parameters (part 1)

The final part of the lectures constitutes a “special seminar” on 
material that will not be on the exam.  Details in:

G. Cowan, Statistical Models with Uncertain Error Parameters, Eur. Phys. J. C (2019) 79:133, 
arXiv:1809.05778

G. Cowan, Effect of Systematic Uncertainty Estimation on the Muon g − 2 Anomaly, EPJ Web of 
Conferences 258, 09002 (2022), arXiv:2107.02652

E. Canonero, A. Brazzale and G. Cowan, Higher-order asymptotic corrections and their 
application to the Gamma Variance Model, Eur. Phys. J. C (2023) 83:1100, arXiv:2304.10574

E. Canonero and G. Cowan, Correlated Systematic Uncertainties and Errors-on-Errors in 
Measurement Combinations: Methodology and Application to the 7-8 TeV ATLAS-CMS Top Quark 
Mass Combination, arXiv:2407.05322

“Errors on Errors”
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https://xkcd.com/2110/ Randall Munroe, xkcd.com
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Errors on errors:  the issue
The method of least squares requires the standard deviations of 
the measured quantities, but often these are poorly known.

The uncertainty (e.g. confidence interval) of an LS average does 
not reflect goodness of fit:

  LS average of 9 ± 1 and 11 ± 1 is 10 ± 0.71

  LS average of 5 ± 1 and 15 ± 1 is 10 ± 0.71

LS estimators are equivalent to maximum-likelihood assuming 
Gaussian distributed measurements; but the tails of a Gaussian 
fall off very fast, not always an appropriate model.

  → Outliers in LS average  have very large influence.

Solution:  incorporate the uncertainty in the standard deviations 
of the measurements into the analysis.
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Formulation of the problem
Suppose measurements y have probability (density) P(y|μ,θ), 

 μ = parameters of interest

 θ = nuisance parameters

To provide info on nuisance parameters, often treat their best 
estimates u as indep. Gaussian distributed r.v.s., giving likelihood

or log-likelihood (up to additive const.)
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Systematic errors and their uncertainty

Often the θi could represent a systematic bias and its best 
estimate ui in the real measurement is zero.

The σu,i are the corresponding “systematic errors”.

Sometimes σu,i is well known, e.g., it is itself a statistical error 
known from sample size of a control measurement.

Other times the ui are from an indirect measurement, Gaussian 
model approximate and/or the σu,i  are not exactly known.

Or sometimes σu,i is at best a guess that represents an 
uncertainty in the underlying model (“theoretical error”).

In any case we can allow that the σu,i are not known in general 
with perfect accuracy.
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Gamma model for variance estimates

Suppose we want to treat the systematic errors as uncertain,
so let the σu,i be adjustable nuisance parameters.

Suppose we have estimates si for σu,i  or equivalently vi = si
2, is an 

estimate of σu,i
2.

Model the vi as independent and gamma distributed:

Set α and β so that they give desired mean and width for f (v):

   E[v] = σu
2  =  α/β,

   r = 1/2√α ≈ relative “error on the error” = σs/E[s] .
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Distributions of v and s = √v

For α, β of  gamma distribution, 

relative “error on error”
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Motivation for gamma model

If one were to have n independent observations u1,..,un,  with all 
u ~ Gauss(θ, σu

2),  and we use the sample variance

to estimate σu
2, then (n−1)v/σu

2 follows a chi-square distribution
for n−1 degrees of freedom, which is a special case of the
gamma distribution (α = n/2, β = 1/2).  (In general one doesn’t
have a sample of ui values, but if this were to be how v was 
estimated, the gamma model would follow.)

Furthermore choice of the gamma distribution for v allows one
to profile over the nuisance parameters σu

2 in closed form and 
leads to a simple profile likelihood.



32G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 11

Likelihood for gamma error model

Treated like data:      y1,...,yL  (the primary measurements)
          u1,...,uN (estimates of nuisance par.)
          v1,...,vN (estimates of variances
                   of estimates of NP)

Adjustable parameters:    μ1,...,μM  (parameters of interest)
           θ1,...,θN (nuisance parameters)
           σu,1,...,σu,N (sys. errors = std. dev. of
            of NP estimates)

Fixed parameters:          r1,...,rN         (rel. err. in estimate of σu,i)

αi = 1/4ri
2

βi = αi/σui
2,
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Profiling over systematic errors

We can profile over the σu,i in closed form

which gives the profile log-likelihood (up to additive const.)

In limit of small ri and vi → σu,i
2, the log terms revert back to the 

quadratic form seen with known σu,i.
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Equivalent likelihood from Student’s t

We can arrive at same likelihood by defining

Since ui ~ Gauss and vi ~ Gamma, zi ~ Student’s t

with 

Resulting likelihood same as profile Lʹ(μ,θ) from gamma model 
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Statistical Data Analysis
Lecture 11-4

• Statistical models with uncertain error parameters (part 2)

Recall the profile likelihood from Lecture 11-3:
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Curve fitting, averages

Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters of interest in the fit function φ(x;μ), 

θ are bias parameters constrained by control measurements 
ui ~ Gauss(θi, σu,i), so that if σu,i are known we have

(known).
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Profiling over θi with known σu,i

Profiling over the bias parameters θi for known σu,i gives usual 
least-squares (BLUE) 

Widely used technique for curve fitting in Particle Physics.

Generally in real measurement, ui = 0.

Generalized to case of correlated yi and ui by summing 
statistical and systematic covariance matrices.
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Curve fitting with uncertain σu,i

Suppose now σu,i
2  are adjustable parameters with gamma 

distributed estimates vi.

Retaining the θi but profiling over σu,i
2 gives

Profiled values of θi from solution to cubic equations:
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Example:  average of two measurements

Increased discrepancy
between values to be 
averaged gives larger
interval.

Interval length saturates
at ~level of absolute 
discrepancy between 
input values.

Approximate (”MINOS”) confidence interval based on

with

relative error 
on sys. error
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Sensitivity of average to outliers

Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i 

outer error bars 
= (σy,i

2 + σu,i
2)½ 
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Sensitivity of average to outliers (2)

Now suppose the measurement at 10 had come out at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2

If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier

Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Discussion / Conclusions

Gamma model for variance estimates gives confidence intervals
that increase in size when the data are internally inconsistent,
and gives decreased sensitivity to outliers (known property of 
Student’s t based regression).

Equivalence with Student’s t model, ν = 1/2r2 degrees of freedom.

Simple profile likelihood – quadratic terms replaced by logarithmic:
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Discussion / Conclusions (2)
Asymptotics can break for increased error-on-error, may need 
Bartlett correction, higher-order asymptotics or MC.*

Method assumes that meaningful ri values can be assigned and 
is valuable when systematic errors are not well known but 
enough “expert knowledge” is available to do so.

Alternatively, one could try to fit a global r to all systematic
errors, analogous to PDG scale factor method or meta-analysis
à la DerSimonian and Laird.  (→ future work).

Could also use e.g. as “stress test” – crank up the ri values until 
significance of result degrades and ask if you really trust the 
assigned systematic errors at that level.

* see E. Canonero et al., Eur. Phys. J. C (2023) 83:1100, arXiv:2304.10574 
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Extra Slides
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Single-measurement model

As a simplest example consider

y ~ Gauss(μ, σ2), 

v ~ Gamma(α, β),

Test values of μ with tμ = -2 ln λ(μ) with 
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Distribution of tμ

From Wilks’ theorem, in the asymptotic limit we should
find tμ ~ chi-squared(1).

Here “asymptotic limit” means all estimators ~Gauss, which
means r → 0.  For increasing r, clear deviations visible:
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Distribution of tμ  (2)

For larger r, breakdown of asymptotics gets worse:

Values of r ~ several tenths are relevant so we cannot in general
rely on asymptotics to get confidence intervals, p-values, etc.
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Bartlett corrections

One can modify tμ defining

such that the new statistic’s distribution is better approximated 
by chi-squared for nd degrees of freedom (Bartlett, 1937).

For this example E[tμ] ≈ 1 + 3r2  +  2r4 works well:
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Bartlett corrections (2)

Good agreement for r ~ several tenths out to √tμʹ ~ several, i.e.,
good for significances of several sigma:
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68.3% CL confidence interval for μ
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Goodness of fit

Can quantify goodness of fit with statistic

where Lʹ (φ,θ) has an adjustable φi for each yi (the saturated
model).

Asymptotically should have q ~ chi-squared(N−M).

For increasing ri, may need Bartlett correction or MC.
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Distributions of q
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Distributions of Bartlett-corrected qʹ
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Same with interval from pμ = α with 
nuisance parameters profiled at μ
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Coverage of intervals
Consider previous average of 
two numbers but now generate
for i = 1, 2 data values 

     yi ~ Gauss(μ, σy,i)

     ui ~ Gauss(0, σu,i)

     vi ~ Gamma(σu,i, ri)

     σy,i = σu,i = 1

and look at the probability 
that the interval covers the
true value of μ.

Coverage stays reasonable
to r ~ 0.5, even not bad
for Profile Construction
out to r ~ 1.
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Naive approach to errors on errors

Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Correlated uncertainties

The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contributing to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).
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Correlated uncertainties  (2)

The total bias of yi can be defined as 

which can be estimated with

These estimators are correlated having covariance

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements ui are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.
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