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Statistical Data Analysis
Lecture 4-1

• Frequentist statistical tests

– Hypotheses

– Definition of a test

• critical region

• size

• power

– Type-I, Type-II errors
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Hypotheses
A hypothesis H specifies the probability for the data, i.e., the 
outcome of the observation, here symbolically: x.

 x could be uni-/multivariate, continuous or discrete.

 E.g. write x ~ P (x|H).

 x could represent e.g. observation of a single object, 
 a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).

Simple (or “point”) hypothesis: P (x|H) completely specified.

Composite hypothesis:  H contains unspecified parameter(s).

P (x|H) is also called the likelihood of the hypothesis H, often 
written L(H) if we want to emphasize just the dependence on H.
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Goal is to make some statement based on the observed data x 

about the validity of the possible hypotheses (here, “accept or 
reject”).

Consider a simple hypothesis H0 (the “null”) and an alternative H1.

A test of H0 is defined by specifying a critical region W of the
sample (data) space S such that there is no more than some (small) 
probability , assuming H0 is correct,  to observe the data there, 
i.e.,
  P(x ∈ W | H0 ) ≤ 

 is called the size of the test, 
prespecified equal to some small 
value, e.g., 0.05.

If x is observed in the critical 
region, reject H0.

Definition of a test

S

W
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Definition of a test (2)

But in general there are an infinite number of possible critical 
regions that give the same size .

Use the alternative hypothesis H1 to motivate where to place the 
critical region.

Roughly speaking, place the critical region where there is a low 
probability (α) to be found if H0 is true, but high if H1 is true:
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Obvious where to put W?

In the 1930s there were great debates as to the role of the 
alternative hypothesis.

Fisher held that one could test a hypothesis H0 without reference 
to an alternative.  

Suppose, e.g., H0 predicts that x (suppose positive) usually comes 
out low.  High values of x are less characteristic of H0, so if a high 
value is observed, we should reject H0, i.e., we put W at high x:  

If we see x 
here, reject H0.
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Or not so obvious where to put W?

But what if the only relevant alternative to H0 is H1 as below:

Here high x is more characteristic of H0 and not like what we 
expect from H1.  So better to put W at low x.

Neyman and Pearson argued that “less characteristic of H0” is 
well defined only when taken to mean “more characteristic of 
some relevant alternative H1”.
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Type-I, Type-II errors 

Rejecting the hypothesis H0 when it is true is a Type-I error.  

The maximum probability for this is the size of  the test:

 P(x ∈ W | H0 ) ≤ 

But we might also accept H0 when it is false, and an alternative 
H1 is true.

This is called a Type-II error, and occurs with probability

 P(x ∈ S − W | H1 ) = 

One minus this is called the power of the test with respect to
the alternative H1:

 Power =  − 
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Rejecting a hypothesis
Note that rejecting H0 is not necessarily equivalent to the
statement that we believe it is false and H1 true.  In frequentist
statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

which depends on the prior probability (H). 

What makes a frequentist test useful is that we can compute
the probability to accept/reject a hypothesis assuming that it
is true, or assuming some alternative is true.
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Statistical Data Analysis
Lecture 4-2

• Particle Physics example for statistical tests

• Statistical tests to select objects/events
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Example setting for statistical tests:  
the Large Hadron Collider

Counter-rotating proton beams
in 27 km circumference ring

pp centre-of-mass energy 14 TeV

Detectors at 4 pp collision points:
 ATLAS
 CMS
 LHCb     (b physics)
 ALICE   (heavy ion physics)

general purpose
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The ATLAS detector

3000 physicists
38 countries 
183 universities/labs

25 m diameter
46 m length
7000 tonnes
~108 electronic channels
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A simulated SUSY event

high p
T

muons
high p

T
 jets 

of hadrons

missing transverse energy

p p

G. Cowan / RHUL Physics
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Background events

This event from Standard 
Model ttbar production also
has high  p

T
 jets and muons,

and some missing transverse
energy.

→ can easily mimic a 

      signal event.

G. Cowan / RHUL Physics
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Classification viewed as a statistical test
Suppose events come in two possible types:  

      s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., H0 = b.

Carry out test on many events, each is either of type s or b, i.e., 
here the hypothesis is the “true class label”, which varies randomly 
from event to event, so we can assign to it a frequentist probability.

Select events for which where H0 is rejected as “candidate events of 
type s”.  Equivalent Particle Physics terminology:

background efficiency

signal efficiency
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Example of a test for classification

Suppose we can measure for 
each event a quantity x, where

with 0 ≤ x ≤ 1.

For each event in a mixture of signal (s) and background (b) test

 H0 : event is of type b

using a critical region W of the form:  W = { x : x ≤ xc }, where
xc is a constant that we choose to give a test with the desired size α.
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Classification example (2)

Suppose we want α = 10−4.     Require:

and therefore 

For this test (i.e. this critical region W), the power with respect 
to the signal hypothesis (s) is

Note:  the optimal size and power is a separate question that will 
depend on goals of the subsequent analysis.
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Classification example (3)

Suppose that the prior probabilities for an event to be of  
type s or b are:

   πs = 0.001

   πb = 0.999

The “purity” of the selected signal sample (events where b 
hypothesis rejected) is found using Bayes’ theorem:
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Classification example (4)

Suppose an individual event is observed at x = 0.1.  What is 
the probability that this event is background?

(Here nothing to do with the test using x ≤ xc , just an illustration
of Bayes’ theorem.)
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Statistical Data Analysis
Lecture 4-3

•  Hypothesis test for classification

• Test statistic to define critical region

• Neyman-Pearson lemma
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Classifying fish
You scoop up fish which are of two types: 

Sea 
Bass

Cod

You examine the fish with automatic sensors and for each one
you measure a set of features:

 x1 = length    x4 = area of fins
 x2 = width    x5 = mean spectral reflectance
 x3 = weight   x6 = ...

These constitute the “feature vector”  x = (x1,..., xn).

In addition you hire a fish expert to identify the “true class label”
y = 0 or 1 (i.e., 0 = sea bass, 1 = cod) for each fish.  We thus obtain 
“training data”:  (x, y)1, (x, y)2, ..., (x, y)N .
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Distributions of the features

If we consider only two 
features x = (x1, x2), we can 
display the results in a scatter 
plot (red:  y = 0, blue: y = 1).

Goal is to determine a decision boundary, so that, without the help 
of the fish expert, we can classify new fish by seeing where their 
measured features lie relative to the boundary.

Same idea in multi-dimensional feature space, but cannot 
represent as 2-D plot.  Decision boundary is n-dim. hypersurface.
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Decision function, test statistic

A surface in an n-dimensional 
space can be described by

scalar 
function

constant

Different values of the constant
tc result in a family of surfaces.

Problem is reduced to finding 
the best decision function or test 
statistic t (x).
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Distribution of t(x)

f (t|H1)f (t|H0)

W

By forming a test statistic t(x), the boundary of the critical region in 
the n-dimensional x-space is determined by a single single value tc.

tc
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Types of decision boundaries

So what is the optimal boundary for the critical region, i.e., what
is the optimal test statistic t(x)?

First find best t(x), later address issue of optimal size of test.

Remember x-space can have many dimensions.

“cuts” linear non-linear
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Test statistic based on likelihood ratio 

How can we choose a test’s critical region in an ‘optimal way’?

 Neyman-Pearson lemma states:

For a test of H0 of size α, to get the highest power with respect to the
alternative H1 we need for all x in the critical region W

inside W and  ≤ cα outside, where cα is a constant chosen to give a 
test of the desired size.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.

G. Cowan / RHUL Physics

”likelihood 
ratio (LR)”
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Proof of Neyman-Pearson Lemma

G. Cowan / RHUL Physics

Consider a critical region W and suppose the LR 
satisfies the criterion of the Neyman-Pearson 
lemma:

 P(x|H1)/P(x|H0)  ≥  cα  for all x in W, 

 P(x|H1)/P(x|H0)  ≤  cα  for all x not in W. 

δW+

Try to change this into a different critical 
region W′ retaining the same size α, i.e.,

δW−

W′

W

To do so add a part δW+, but to keep the 
size α, we need to remove a part δW−, i.e., 
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Proof of Neyman-Pearson Lemma (2)

G. Cowan / RHUL Physics

δW+But we are supposing the LR is higher for 
all x in δW− removed than for the x in 
δW+ added, and therefore

δW−

W′

The right-hand sides are equal and therefore 
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Proof of Neyman-Pearson Lemma (3)

G. Cowan / RHUL Physics

Note W and δW+ are disjoint, and 
W′ and δW− are disjoint, so by 
Kolmogorov’s 3rd axiom,

We have

Therefore

δW+

δW−

W′
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Proof of Neyman-Pearson Lemma (4)

G. Cowan / RHUL Physics

And therefore 

i.e. the deformed critical region W′  cannot have higher power 
than the original one that satisfied the LR criterion of the 
Neyman-Pearson lemma.
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Statistical Data Analysis
Lecture 4-4

• Why the Neyman-Pearson lemma usually doesn’t help us

• Strategies for multivariate analysis

• Linear discriminant analysis
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Neyman-Pearson doesn’t usually help

We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 

so for a given x we can’t evaluate the likelihood ratio

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data:

 generate x ~ f (x|s)     →     x1,..., xN

 generate x ~ f (x|b)     →     x1,..., xN

This gives samples of “training data” with events of known type.

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).



G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4 33

How is it we don’t have f (x|H)?
In a Monte Carlo simulation of a complex process, the 
fundamental hypothesis does not predict the pdf for the finally 
measured variables x but rather for some intermediate set of 
”latent” variables, say, z1.  

So in step 1 we sample z1 ~ f (z1|H), followed by many further 
intermediate steps:
   z2 ~ f (z2|z1)

   z3 ~ f (z3|z2)

    ⠇

   x ~ f (x|zn)

So even though H is fully defined and we can generate x 
according to it, the formula for f (x|H) is an enormous integral 
that we cannot compute:

See, e.g., Kyle Cranmer, Johann 
Brehmer, Gilles Louppe, The frontier of 
simulation-based inference, 
arXiv:1911.01429 [stat.ML], PNAS 
doi.org/10.1073/pnas.1912789117
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Approximate LR from histograms

Want t(x) = f (x|s)/ f(x|b) for x here

N (x|s) ≈ f (x|s)

N (x|b) ≈ f (x|b)

N
(x

|s
)

N
(x

|b
)

One possibility is to generate
MC data and construct
histograms for both
signal and background.

Use (normalized) histogram 
values to approximate LR:

x

x

Can work well for single 
variable.
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Approximate LR from 2D-histograms
Suppose problem has 2 variables.  Try using 2-D histograms:

Approximate pdfs using N (x1,x2|s), N (x1,x2|b) in corresponding cells.

But if we want M bins for each variable, then in n-dimensions we
have Mn cells; can’t generate enough training data to populate.

 → Histogram method usually not usable for n > 1 dimension.

signal back-
ground

x 2
x1 x1

x 2
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Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be
used directly, because we usually don’t have f (x|s), f (x|b).

Histogram method with M bins for n variables requires that
we estimate Mn parameters (the values of the pdfs in each cell),
so this is rarely practical.

A compromise solution is to assume a certain functional form
for the test statistic t (x) with fewer parameters; determine them
(using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities f (x|s) and 
f (x|b) (with something better than histograms) and use the 
estimated pdfs to construct an approximate likelihood ratio.
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Multivariate methods    (Machine Learning)

Many new (and some old) methods:

 Fisher discriminant

 Neural networks

 Kernel density methods

 Support Vector Machines

 Decision trees

  Boosting

  Bagging 



G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4 38

Resources on multivariate methods

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical 
Learning, 2nd ed., Springer, 2009

Gareth James, Daniela Witten, Trevor Hastie and Robert 
Tibshirani, An Introduction to Statistical Learning, Springer, 
2017, https://www.statlearning.com/

Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques 
in Particle Physics, Wiley, 2014.

朱永生 （编著），实验数据多元统计分析， 科学出版社，  
北京，2009。
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Software 

Rapidly growing area of development – two important resources:

scikit-learn

 Python-based tools for Machine Learning

 scikit-learn.org

 Large user community

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

 From tmva.sourceforge.net, also distributed with ROOT

 Variety of classifiers

 Good manual, widely used in HEP
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Linear test statistic

Suppose there are n input variables:  x = (x1,..., xn).  

Consider a linear function:

For a given choice of the coefficients w = (w1,..., wn) we will
get pdfs f (y|s) and f (y|b) :
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Linear test statistic

Fisher:  to get large difference between means and small widths 
for f (y|s) and f (y|b),  maximize the difference squared of the
expectation values divided by the sum of the variances:

Setting ∂J / ∂wi = 0 gives:

,
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The Fisher discriminant

The resulting coefficients wi define a Fisher discriminant.

Coefficients defined up to multiplicative constant; can also
add arbitrary offset, i.e., usually define test statistic as

Boundaries of the test’s
critical region are surfaces 
of constant y(x), here linear 
(hyperplanes):
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Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both 
multivariate Gaussians with same covariance but different means:

f (x|s)  = Gauss(μs, V)

f (x|b)  = Gauss(μb, V)

Same covariance 
Vij = cov[xi, xj]

In this case it can be shown 
that the Fisher discriminant is

i.e., it is a monotonic function of the likelihood ratio and thus
leads to the same critical region.  So in this case the Fisher
discriminant provides an optimal statistical test.
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Extra slides
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Choosing a critical region

To construct a test of a hypothesis H0, we can ask what are the 
relevant alternatives for which one would like to have a high power.

 Maximize power wrt H1 = maximize probability to
              reject H0 if H1 is true.

Often such a test has a high power not only with respect to a 
specific point alternative but for a class of alternatives.  
E.g., using a measurement x ~ Gauss (μ, σ) we may test

 H0 : μ = μ0 versus the composite alternative H1 : μ > μ0

We get the highest power with respect to any μ > μ0  by taking 
the critical region x ≥ xc where the cut-off xc is determined by 
the significance level such that 

   α = P(x ≥xc|μ0).
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Τest of μ = μ0 vs. μ > μ0 with  x ~ Gauss(μ,σ)

Standard Gaussian quantile

Standard Gaussian
cumulative distribution



G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4 47

Choice of critical region based on power (3)

But we might consider μ < μ0 as 
well as μ > μ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided 
test).

New critical region now 
gives reasonable power 
for μ < μ0, but less power 
for μ > μ0 than the original 
one-sided test.



G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 4 48

No such thing as a model-independent test
In general we cannot find a single critical region that gives the
maximum power for all possible alternatives (no “Uniformly
Most Powerful” test). 

In HEP we often try to construct a test of

 H0 : Standard Model (or “background only”, etc.)

such that we have a well specified “false discovery rate”,

 α = Probability to reject H0 if it is true,

and high power with respect to some interesting alternative, 

 H1 : SUSY, Z′, etc.

But there is no such thing as a “model independent” test.  Any
statistical test will inevitably have high power with respect to
some alternatives and less power with respect to others.
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