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Statistical Data Analysis
Lecture 5-1

e Beyond linear classifiers

e Neural networks
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[.inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary 1s almost useless.
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Nonlinear transformation of imnputs

We can try to find a transformation, Xq,---, X, 7@ (X),...., @, (X)
so that the transformed ““feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan " (x,/x,) __— basis functions

S (no free parameters)
P,=\ x|+ X,
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Neural networks

Neural networks originate from attempts to model neural processes
(McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only “advanced”
multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing
the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the
resulting discriminant function has the best performance.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 5



The single layer perceptron

n
Define the discriminant using y(x)=h Wo"‘z W, X,
i=1

where /4 1s a nonlinear, monotonic activation function; we can use
* . . s —-X _1
e.g. the logistic sigmoid 4(x)=(1+e ) .

X
If the activation function is monotonic,
the resulting y(x) is equivalent to the
original linear discriminant. O y(x)
This is called the single layer T
perceptron: £,

: output node

input layer
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The activation function

Can use e.g. the "logistic h(x)oﬁ ’

sigmoid”: e |
1

h(x) = T

( ) 1 _|_ E_I 02

0 1

or (esp. with deep neural

networks) the “Rectified h(x) |
Linear Unit” (ReLU) function:

€T x > 0.

0 r <0,
h(af)—{
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The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs ¢,(X),...,®,,(x) that form a “hidden layer™:

Superscript for weights indicates  x;
layer number

\

@, (F)=h|wig + 2, wy'x,
j=1
, Xn
-\ (2) (2) =
y(X)=h{wy +Z WU(PJ(_-’L)) . ! hidden  output
i=1 inputs

layer ¢,

This 1s the multilayer perceptron, our basic neural network model;

straightforward to generalize to multiple hidden layers.
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Fisher (linear): Neural network:
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Signal: efe > WHW-
Background: ete~ — qqgg (4 less well separated hadron jets)

0.2

0.1

0.05

02
0.15
0.4
0.05

G.2

0.!5

(R0 =

0.0

Neural network example from LEP Il

0 0.5 1
Log{Aplonority)

0.2
0.15 |
o1 |

008 |

0.z r
045 |
o1 |
0.08 |

0s 1
10g(Yzs)

0.5

1

Sphericity

o 8

a.5

1
Thrust

0.2

0.13

0.1

0.06 |

0.2

0.1

0.z

0.15

ANE

0.05

0
0

S P

0.5 1
Log(Y sasesr)

0 0.5 1
Planarity

(15 MY

0.5 1
Min(E.)

o

(often 4 well separated hadron jets)

< input variables based on jet
structure, event shape, ...

none by itself gives much separation.

Neural network output:

.7
0.6
0.5

0.4

S BAARA RAARY B8 A

03 |

0z ’_r_!_,—
0.1 ]

¢ B PR TR orarer STomvir rerormm e e = !
0 of 02 D3

04 05 08 07 08 09 1
Neuron Quiput

(Garrido, Juste and Martinez, ALEPH 96-144)

G. Cowan / RHUL Physics

Statistical Data Analysis / lecture week 5

10



Statistical Data Analysis
Lecture 5-2

e Network architecture
e Training neural networks

e Qvertraining
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Network architecture

Theorem: An MLP with a single hidden layer having a sufficiently
large number of nodes can approximate arbitrarily well the optimal
decision boundary.

Holds for any continuous non-polynomial activation function
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867

However, the number of required nodes may be very large;
cannot train well with finite samples of training data.

Recent advances in Deep Neural Networks have shown
important advantages in having multiple hidden layers.

For particle physics applications of Deep Learning, see e.g.
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014); arXiv:1402.4735.

Dan Guest, Kyle Cranmer, Daniel Whiteson, Deep Learning and its Application to LHC
Physics, Annu. Rev. Nucl. Part. Sci. 2018. 68:1-22, arXiv:1806.11484.
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http://neuralnetworksanddeeplearning.com/chapl.html

Deep Neural Networks

The multilayer perceptron can have be generalized to have an
arbitrary number of hidden layers, with an arbitrary number of
nodes in each (= “network architecture”).

A “deep” network has several (or many) hidden layers:

hidden layers

output layer

input layer |

“Deep Learning” is a very recent and active field of research.
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(not examinable)

Network training

The type of each training event 1s known, 1.e., for event @ we have:

X,=(xy,..., x,) the input variables, and

t =0,1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function” (or “loss function”)

Contribution to error function
from each event
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(not examinable)

Numerical minimization of E(w)

Consider gradient descent method: from an initial guess in weight
space w'" take a small step in the direction of maximum decrease.
l.e. for the step T to T+1,

W=y F (367

\

learning rate (n>0)

It we do this with the full error function E(w), gradient descent does

surprisingly poorly; better to use “conjugate gradients”.
But gradient descent turns out to be useful with an online (sequential)
method, i.e., update w for randomly chosen event a, (or ’mini-batch™)

(t+1) __ (7)_ . (1) (“stochastic
" " Y E, (W) gradient descent™)
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(not examinable)

Error backpropagation

Error backpropagation (“backprop™) is an algorithm for finding the
derivatives required for gradient descent minimization.

The network output can be written y(x) = A(u(x)) where

(1) .
Z H’}ﬂr lk)
k=0

u(¥)= w[f;(pj(i‘], @, (x)=h
7=0

where we defined ¢, = x, = | and wrote the sums over the nodes

in the preceding layers starting from 0O to include the offsets.

E
Soe.g. for event a we have & {":) =(y_—t )h '(u(i:’))(pj(i‘)
5 w HJ- \
derivative of
Chain rule gives all the needed derivatives. activation function
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Comments on network training

The algorithms for adjusting the network parameters have

become a very active field of research (and beyond the scope
of this course).

Recent ideas include:

“Deep” neural nets, use of ReLU activation function

Stochastic gradient descent: estimate of gradient
approximated by a randomly selected subset of the data.

Dropout: randomly exclude nodes during training
(prevents “overtraining”)
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Overtraining

Including more parameters in a classifier makes its decision boundary
increasingly flexible, e.g., more nodes/layers for a neural network.

A “flexible” classifier may conform too closely to the training points;
the same boundary will not perform well on an independent test
data sample (— “overtraining”).

> 4 > 4
i training sample . * independent test sample
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Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g.,
error function E(w)) for test and training samples, it will usually
decrease for both as the boundary is made more flexible:

error
rate

G. Cowan / RHUL Physics

optimum at minimum of
error rate for test sample

l increase in error rate

/ indicates overtraining

—— test sample

training sample

flexibility (e.g., number
of nodes/layers in MLP)
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Statistical Data Analysis
Lecture 5-3

e Non-parametric probability density estimation

e Kernel density estimator
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Probability Density Estimation (PDE)

A possible way to approximate the likelihood ratio for two
hypotheses f(x|H,) and f(x|H,) is to first find a non-parametric
estimator for the corresponding pdfs and then use these to
define the test statistic (decision function),

(x) = f(X|H1) (hats denote
 f(x|Ho) estimators)

Here the term “non-parametric” means the the estimate will
be very general, not necessarily from a specific pdf family,
and have a “local” character reflecting training data values.

The n-dimensional histogram was a brute-force example of
this; there are better ways.

Non-parametric pdf estimates are useful in many ways; here
for obtaining a test statistic but one example.
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Correlation vs. independence
In general a multivariate pdf f(X) for X = (X4,...,X,) does not

factorize into a product of the marginal pdfs for the individual
variables, and

f(x) =] fi(a)
i=1
only holds if the components of X are independent.

In particular, the components of X may in general have nonzero
covariances, i.e., they are correlated:

Vij = cov(zi, x| = Elriz;] — E[z;]Elz;] # 0
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Decorrelation of input variables

We can always define new input variables by an orthogonal
transformation such that the transformed variables are uncorrelated:

u= Ax covius, u;] = V|u;]di;

One can show that this is achieved when the rows of the matrix A
are the eigenvectors of Vj; = cov[x;, X;] (cf. SDA Sec. 1.7).

>2\16 T T T T :(\16 T T T T

2 2 -
4T (a) 4T b
6 | | | | 6 | | | |
6 4 2 0 2 4 6 6 4 2 0 2 4 6
X1 Uj
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Decorrelation is only first step

But even with zero correlation, a multivariate pdf f(X) will in general
have features such that the components are not independent.

10 ‘ pdf with zero covariance (no tilt)
- s but components still not
/ independent, since clearly

f(mla'/EQ)
fi(x1)

; o and therefore

X5

fzalxr) = # fa(x2)

f(x1,22) # fi(xr) fa(2)
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Naive Bayes method

First “decorrelate” x, i.e., find u = Ax, with cov[u;, uj] = V[u] J; .

Pdfs of X and U are then related by
f(x) = [J]g(u(x)) where J = det(A)

Suppose that the “decorrelated” g(u) can be approximated by
product of marginal pdfs

~ || gi(uw:)
i=1
and take as an estimator for f(X)

fx) = 1Jlg(u |J|ng ui(x)) = |det(A4)| | [ g:((4),)
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Naive Bayes method (2)

Approximate the pdfs separately for the two hypotheses H; and
H, (separate matrices A and A; and marginal pdfs gg;, §;;). Then
define test statistic as

_ fexlm)
f (x| Ho)

Gives “Naive Bayes” classifier.

y(x)

Reduces problem of estimating an n-dimensional pdf to finding n
one-dimensional marginal pdfs g;(u;).
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Kernel-based PDE (KDE)

Consider d dimensions, N training events, Xy, ..., Xy,
estimate f(x) with

X of I training
event

X where we want

to know pdf /
N\

N - =
ff: Z ($hxz

™~ bandwidth
kernel (smoothing parameter)

1 12
—|Z2/2

U 8.G ian k |: K((¥) =
se e.g. Gaussian kerne (%) ()2

and do individually for each component (i.e. f(x) — g;(u;)).
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Gaussian KDE in 1-dimension

Suppose the pdf (dashed line) below is not known, but we can
generate or observe values that follow it (the red tick marks):

- - e
________ —

Goal is to find an approximation to the pdf using the data values.
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Gaussian KDE in 1-dimension (cont.)

Place a kernel pdf (here a Gaussian) centred around each
generated event weighted by 1/N,
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Gaussian KDE in 1-dimension (cont.)

The KDE estimate the pdf is given by the sum of
all of the Gaussians:
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Choice of kernel width

The width h of the Gaussians is analogous to the bin width
of a histogram. If it is too small, the estimator has noise:
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Choice of kernel width (cont.)

If width of Gaussian kernels too large, structure is washed out:
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KDE discussion

Various strategies can be applied to choose width h of kernel
based trade-off between bias and variance (noise).

Adaptive KDE allows width of kernel to vary, e.g., wide where
target pdf is low (few events); narrow where pdf is high.

Advantage of KDE: no training!

Disadvantage of KDE: to evaluate we need to sum N, terms,
so if we have many events this can be slow.

Special treatment required if kernel extends beyond range
where pdf defined. Can e.g., renormalize the kernels to unity
inside the allowed range; alternatively “mirror” the events
about the boundary (contribution from the mirrored events
exactly compensates the amount lost outside the boundary).

Software in ROOT: RooKeysPdf (K. Cranmer, CPC 136:198,2001),

or in python: sklearn.neighbors.KernelDensity
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Statistical Data Analysis
Lecture 5-4

Examples of classifiers

Boosted decision trees
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Test example with TMVA

Each event characterized by 3 variables, X = (X, Xy, X3):

T e
§ 0'75'Signal ] 2 §
d Fp ] - o
© 06 /| Background 3 e =
z g ] z =
o - ] © ] %

= 2 = 12
< 12 £ s =
- Jlo S o =
= 1 s =

]2 {1
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=] 1e
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-4 = ::
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Test example (Xq, X5, X3)
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Fisher
discriminant

Erlies

[y

Naive Bayes,

1o’

no decorrelation

1
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Erliies

'

o'
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Multilayer
perceptron

Naive Bayes with
decorrelation
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Particle i.d. in MiniBooNE

Detector is a 12-m diameter

tank of mineral oil exposed to a Electron candidate

. ] fuzzy ring, short track

beam of neutrinos and viewed N <
by 1520 photomultiplier tubes: w

L

MiniBooNE Detector

Muon candidate
sharp ring, filled in

~~

Pion candidate

ﬁ _two "e-like" rings
\’Al;\\“‘\,.//"f\"pt

Search for v to v, oscillations £ 0
: moooe ) n_—%<n
required particle i.d. using -l

information from the PMTs. o
H.J. Yang, MiniBooNE PID, DNPO6
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Decision trees

Out of all the input variables, find the one for which with a single “cut”
(require e.g. X < X,) gives best improvement in signal purity:

E W,

p . signal !
E Wt E w.
signal ! background !

where w.. is the weight of the ith
event.

Resulting nodes classified as either
signal/background.

Iterate until stop criterion reached
based on e.g. purity or minimum
number of events in a node.

The set of cuts defines the decision

boundary.

G. Cowan / RHUL Physics
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<500 cm

S
71
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2/9

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577
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Finding the best single cut

The level of separation within a node can, e.g., be quantified by
the Gini coefficient, calculated from the (s or b) purity p as:

G =p(l—p)
P=0or1gives min G =0,
p = 1/2 gives max G = 1/4.

For a cut that splits a set of events a into subsets b and ¢, one
can quantify the improvement in separation by the change in
weighted Gini coefficients:

A =W,Go — WGy — W.Ge  where,eg, W, =>» w
1=a
Choose e.g. the cut to the maximize 4.
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Decision trees (2)

The terminal nodes (leaves) are classified a signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with discriminant function

f(x) = 1 if X in signal region, —1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Ensemble methods such as boosting can be used to reduce these
fluctuations.
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Boosting

Boosting is a general method for creating a set of classifiers that
can be combined to achieve a new one that is better than any
individual one (an example of "ensemble learning”).

Often applied to decision trees but can be applied to any classifier.

Suppose we have a training sample T consisting of N events with

X1yeeey XN event data vectors
Yisees YN true class labels (+1 or -1)
Wo,..., Wy event weights

Define a rule to create from this an ensemble of training samples
T4, T,,..., derive a classifier from each and average them.

Trick is to create modifications in the training samples to give
classifiers with smaller error rates than the preceding ones.

A successful example is AdaBoost (Freund and Schapire, 1997).
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AdaBoost

First initialize the training sample T, using the original

X1yeeey XN event data vectors
Yisees YN true class labels (+1 or -1)
w, D, wy @ event weights

with the weights equal and normalized such that

N
Z *wgl} =1
i=1

Then train the classifier f;(X) (e.g., a decision tree) with a method
that uses the event weights. Recall for an event at point X,

f,(X) = +1 for X in signal region, —1 in background region

We will define an iterative procedure that gives a series of
classifiers f;(x), f,(x),...

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 5
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Error rate of the kth classifier

At the kth iteration the classifier f,(X) has an error rate

N
ke
e = wi O I(yi fr(xi) < 0)
i=1
where |(X) = 1 if X is true and is zero otherwise.

Next assign a score to the kth classifier based on its error rate,

1. 1—c¢
EE;::E]H “k

Ek
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Updating the event weights

The classifier at each iterative step is found from an updated
training sample, in which the weight of event 1 is modified from

step k to step k+1 according to

—arg fr (%3 )y
wngrl) _ -wl.:k}e 7

Here Z, is a normalization factor defined such that the sum of the
weights over all events is equal to one.

That is, the weight for event 1 is increased in the k+1 training
sample if it was classified incorrectly in step k.

Idea is that next time around the classifier should pay more
attention to this event and try to get it right.

Statistical Data Analysis / lecture week 5
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Defining the decision function

After K boosting iterations, the final decision function is defined
as a weighted linear combination of the f,(x),

K
tx) = 3 arfi(x)
k=1

One can show that the error rate on the training data of the final
classifier satisfies the bound

K
£ < H 2/ k(1 — ;)
k=1

i.e. as long as the g, < % (better than random guessing), with
enough boosting iterations every event in the training sample will

be classified correctly.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 5 46



BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, \L or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 — 0.45
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B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

From MiniBooNE

example:

Performance stable
after a few hundred

trees.

G. Cowan / RHUL Physics

Training MC Samples .VS.  Testing MC Samples
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Ensemble methods

Boosting is an example of “ensemble learning”; the original
training sample is “boosted” into an ensemble of samples.

Other related methods include:

Bagging (bootstrap aggregating) : the training samples are created
by sampling events randomly from the original sample with
replacement. In a given sample, an event might occur zero, one or
multiple times.

Random forest: a type of bagging where features are randomly
dropped.

More in Ch. 8 of An Introduction to Statistical Learning with
Applications in R by James, Witten, Hastie and Tibshirani;
https://www.statlearning.com/ see also the videos by Hastie and

Tibshirani: https://youtube.com/playlist?list=PLOgOngHtcqbPTIZzRHA20cQZqB1D qZ5V
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Extra slides
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Network training

For each of the training events we have the feature vector
and true event type (class label):

Xq = (Xq,-00 X1), Vo = 0,1, a=0,...,N

We have a functional form for the decision function t(X; w) that
depends on a vector of weights w.

Use the training data to determine the weights by minimizing
a “loss function”. Various possibilities, e.g.,

N
1
E(w) = 2 Z [t(%a, W) = yal” quadratic loss function
a=1
- r
Leg(w) = — Z [Yalog t(xXa; W) + (1 — y,) log(1 — t(xq; W))] Cross
a=1 entropy
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A simple example (2D)

Consider two variables, X; and X,, and suppose we have formulas
for the joint pdfs for both signal (s) and background (b) events (in
real problems the formulas are usually notavailable).

f(X,|x,) ~ Gaussian, different means for s/b,
Gaussians have same g, which depends on X,,
f(X,) ~ exponential, same for both s and b,

F(Xg, X0) = F(Xq[xp) f(Xy):

1 2 /0.2 1
— _{II_P'-'S} _fﬂﬂ’ (‘TE) - —:Bgf‘:!t
T1,Tals) = e o
far,zls) \/2_1r£r(:1:g) A\
1 (1 —p1s )2 /92 1 _
f(z1,229|b) = (x1—pp)?/20%(22) ~ ,—x2/A

V2o (o) ‘ A

o(xo) = ooe*2/¢
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Joint and marginal distributions of X4, X,

o~ 8
>

'y

6 - background”

flx)

— signal

----- background
0.75 t --
05t
025t

G. Cowan / RHUL Physics

075 |1

0.5 r

0.25 r

— signal

background

Distribution f(x,) same for s, b.

So does X, help discriminate
between the two event types?
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Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined
by the likelihood ratio:

f(x1, T2ls)
f($1,$2|b)

t(ﬂ?l,iﬂg) —

Equivalently we can use any monotonic function of this as
a test statistic, e.g.,

5 — ) + (s — pn) T
o HEE_Q-TE{'IE

Int

Boundary of optimal critical region will be curve of constant In t,
and this depends on X,!
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Contours of constant MVA output

Exact likelihood ratio Fisher discriminant
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Contours of constant MVA output

Multilayer Perceptron | Boosted Decision Tree
1 hidden layer with 2 nodes 200 iterations (AdaBoost)

Training samples: 10° signal and 10° background events
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04

0.2

ROC curve

ROC = “receiver operating
characteristic” (term from
signal processing).

Shows (usually) background
rejection (1—¢,) versus

_ signal efficiency &..
-------- Fisher
_____ MLP . :
' Higher curve is better;
—— BDT -a, .
{  usually analysis focused on
02 04 06 08 1 asmall part of the curve.
€
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2D Example: discussion

Even though the distribution of X, is same for signal and
background, X; and X, are not independent, so using x, as an
input variable helps.

Here we can understand why: high values of X, correspond to a
smaller o for the Gaussian of X;. So high X, means that the value
of X; was well measured.

If we don’t consider X,, then all of the X; measurements are
lumped together. Those with large o (low X,) “pollute” the well
measured events with low o (high X,).

Often in HEP there may be variables that are characteristic of
how well measured an event is (region of detector, number of
pile-up vertices,...). Including these variables in a multivariate
analysis preserves the information carried by the well-measured
events, leading to improved performance.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant
neural networks
naive Bayes

and has in recent years started to use a few more:

boosted decision trees
support vector machines
kernel density estimation
k-nearest neighbour

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the

competition if backed up by, say, 40 evidence from a cut-based method.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.lbl.gov/

Convolutional Neural Networks

Designed for image data (pixels) — number of input variables =10°.

Intermediate layers include “convolutions” of an area in previous
layer, i.e., transformed pixel is a linear combination of pixels in local
neighborhood in previous layer

— far fewer connections than a fully connected MLP.

_\
Nehhhe

CNNs widely used for image classification.
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K. Cranmer, U. Seljak and K. Terao, Machine Learning, in R.L. Workman et al. (PDG), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022); https://pdg.Ibl.gov/

Recurrent Neural Networks

Designed for sequential data (time series).

Y Y YVia Vi Vi Yn
h % ho— h1 /11-1:I ht Ihm‘ i}_h“
X X t-1 X, X X

Figure 41.6: Pictorial description of a RNN (on the left) which takes an input and produces
an output at every step with a hidden-to-hidden connection. The right diagram is unrolled over
discrete steps. The yellow box represents a cell: a set of operations unique to each architecture.

RNNs used, e.g., in natural language processing.
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Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant, Graph Neural Networks in Particle Physics,
2021 Mach. Learn.: Sci. Technol. 2 021001, 2021; https://arxiv.org/abs/2007.13681.

Graph Neural Networks

GNNs work with graph-structured input data, e.g., signals
from particles in tracking detector:

Graph = set of nodes

plus set of edges: o @' f .
o
e e ../,q- ‘\,\

Sgpec S
‘.
)&
Part of a larger field called “geometric deep learning”:

CNN is a type of GNN, graph relates pixel to its neighbors.

Transformer is a GNN that uses a mechanism called “attention”,
used in natural language processing (T of ChatGPT).
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