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Statistical Data Analysis
Lecture 6-1

• p-values

• Definition

• Important properties

• Relationship to hypothesis test
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f (x|H) for a set of
observations x = (x1,...xn). 

We observe a single point in this space: xobs. 

How can we quantify the level of compatibility between the data 
and the predictions of H?

Decide what part of 
the data space represents 
equal or less compatibility  
with H than does the 
point xobs.  (Not unique!) 

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj



p-values
Express level of compatibility between data and hypothesis 
(sometimes ‘goodness-of-fit’) by giving the p-value for H:

= probability, under assumption of H, to observe data 
with equal or lesser compatibility with H relative to the 
data we got. 

= probability, under assumption of H, to observe data as      
discrepant with H as the data we got or more so.

Basic idea:  if there is only a very small probability to find data
with even worse (or equal) compatibility, then H is “disfavoured by 
the data”.

If the p-value is below a user-defined threshold α (e.g. 0.05) then H 
is rejected (equivalent to hypothesis test as discussed previously).
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p-value of H is not P(H)

where π(H) is the prior probability for H.

The p-value of H is not the probability that H is true!

In frequentist statistics we don’t talk about P(H) (unless H 
represents a repeatable observation). 

If we do define P(H), e.g., in Bayesian statistics as a degree of 
belief,  then we need to use Bayes’ theorem to obtain

For now stick with the frequentist approach; 
result is p-value, regrettably easy to misinterpret as P(H).



Compatibility with H
What does it mean for a region of data space to be less 
compatible with the predictions of H?

It must mean that that region of data space is more 
compatible with some relevant alternative Hʹ.

So although the definition of the p-value does not refer 
explicitly to an alternative, this enters implicitly through its 
role in determining the partitioning of the data space into 
more and less-or-equally compatible regions.

As in the case of hypothesis tests, there may be more than 
one relevant alternative.
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Example of p-value:  exponential decay time
A nuclear sample contains two radioactive isotopes with mean lifetimes τ = 0.2 s 
and τ = 1.0 s.

For either isotope we expect the decay time to follow

A nucleus is observed to decay after a time tobs = 0.6 s.

The p-value of the hypothesis H that the 
nucleus is of the type with τ = 0.2 s is
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Here we take t ≥ tobs as being less compatible 
with τ = 0.2 s , because greater t is more 
characteristic of τ = 1.0 s.

If the relevant alternative had been τ = 0.1 s, 
then one would define the p-value as
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p-value from test statistic

ω≤ = { x : x “less 
or eq. compatible” 
with H }

ω> = { x : x “more
compatible” with H }

xobs

xi

xj

surface described by test statistic

If e.g. we define the region of less or eq. compatibility to be t(x) ≥ tobs then 
the p-value of H is
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Distribution of  the p-value
The p-value is a function of the data, and is thus itself a random
variable with a given distribution.  Suppose the p-value of H is 
found from a test statistic t(x) as

The pdf of pH under assumption of H is

In general for continuous data,  under 
assumption of H, pH ~ Uniform[0,1]
and is concentrated toward zero for 
some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)
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Using a p-value to define test of H0
So the probability to find the p-value of H0, p0, less than α is

We started by defining critical region in the original data space (x), 
then reformulated this in terms of a scalar test statistic t(x).

We can take this one step further and define the critical region 
of a test of H0 with size α as the set of data space where p0 ≤ α .

Formally the p-value relates only to H0, but the resulting test will
have a given power with respect to a given alternative H1, and the 
test statistic t(x) used to obtain the p-value can be designed to 
achieve this, e.g., a likelihood ratio t(x) = P(x|H1)/P(x|H0).
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Statistical Data Analysis
Lecture 6-2

• More examples of p-values
– Coin

– Poisson counting experiment

• Equivalent Gaussian significance
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p-value example:  testing whether a coin is ‘fair’

i.e. p = 0.0026 is the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.

Probability to observe n heads in N coin tosses is binomial:

Hypothesis H:  the coin is fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with 
H relative to n = 17 is:  n = 17, 18, 19, 20, 0, 1, 2, 3.  Adding
up the probabilities for these values gives:
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p-value example for coin (2)
Note that the region of equal or lesser compatibility seems
“obvious” but could be different.  

For example, suppose the person tossing the coin works for the 
“Mostly-Heads-Trick-Coin Company”, then maybe 
ω≤ = {17,18,19,20}, and pfair = 0.0013.

Note as well the clear distinction between the p-value of a fair
coin and the probability (degree of belief) that the coin is fair:

Suppose you get the coin as change at a cafe.  You then flip the 
coin 20 times and get 17 heads:

p-value pfair = 0.0026, 
P(fair) = probably still close to 1, depending on prior π(fair).

Suppose a representative of the MHTC Co. proposes a betting 
game in which they win money from you if there is an excess of 
heads.  The result is 17 heads out of 20.  P(fair) = low.
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The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

 Events could be from signal process or from background – 
 we only count the total number.

Poisson model:  

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about s, e.g.,

     test s = 0 (rejecting H0 ≈ “discovery of signal process”)

     test all non-zero s  (values not rejected =  confidence interval)

In both cases need to ask what is relevant alternative hypothesis.
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Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe nobs = 5.  

Should we claim evidence for a new discovery?  

    Give p-value for hypothesis s = 0:
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Significance from p-value
Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

in ROOT:
p = 1 - TMath::Freq(Z)
Z = TMath::NormQuantile(1-p)

in python (scipy.stats):
p = 1 - norm.cdf(Z) = norm.sf(Z)
Z = norm.ppf(1-p)

Result Z is a “number of sigmas”.  Note this does not mean that 
the original data was Gaussian distributed.
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Poisson counting experiment: discovery significance

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended 
to cover, e.g., hidden 
systematics, plausibility signal 
model, compatibility of data with 
signal, “look-elsewhere effect” 
(~multiple testing), etc.

Equivalent significance for p = 1.7 × 10-4:  

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”)
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Statistical Data Analysis
Lecture 6-3

• Test based on histogram

• Pearson’s chi-squared
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Test using histogram of data

Suppose the data are a histogram n = (n1,...,nN) of values and a 
hypothesis predicts mean values ν = E[n] = (ν1,...,νN).



20G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6

Modeling the data
Consider e.g. the following hypotheses:
independent, treat as continuous ni  ~ Gauss(νi, σi)

independent ni ~ Poisson(νi)

n ~ Multinomial(ntot, p),    ntot = Σi  ni,      p = ν / ntot 
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Pearson’s χ2 statistic

(Pearson’s χ2 
statistic)

χ2 = sum of squares of the deviations of the ith measurement 
from the ith predicted mean, using σi as the ‘yardstick’ for the 
comparison.

We can take as the test statistic

χ2 ≥ χ2
obs defines the region of “equal or lesser compatibility” for 

purposes of computing a p-value.

need this pdf
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Distribution of Pearson’s χ2 statistic
If ni ~ Gauss(νi , σi

2), then Pearson’s χ2 will follow the chi-square 
pdf (here write χ2 = z) for N degrees of freedom:

If the ni ~Poisson(νi) then V[ni ] = νi  and so

If νi >> 1 (in practice OK for νi > half dozen) then the Poisson dist. 
becomes Gaussian (see SDA Sec. 10.2) and therefore Pearson’s χ2 
statistic here as well follows the chi-square pdf.

This is called the “large-sample” or “asymptotic” limit. 

For proof using characteristic functions (Fourier transforms) see 
e.g. SDA Sec. 10.2.
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Pearson’s χ2 with multinomial data

If ntot = Σi
Ν ni is fixed, then we can model the histogram using

  n ~ Multinomial(p, ntot) with pi = νi / ntot.

In this case we can take Pearson’s χ2 statistic to be

Note here the denominator is not the variance V[ni] = ntot pi (1-pi),
and also since the ni ~ multinomial they are not independent.

But with this definition, if all pi ntot >> 1 (the “large sample limit”) 
one can show the statistic will follow the chi-square pdf for N-1 
degrees of freedom.
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Example of a χ2 test

← This gives

for N = 20 dof.

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect χ2 to follow the chi-square pdf.

Suppose we have the data below (solid) and prediction (dashed)
of a “background” hypothesis, model ni ~Poisson(νi).
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Using MC to find distribution of χ2 statistic 
If the distribution of the χ2 statistic is not expected to be well 
approximated by the asymptotic chi-square distribution, we can 
still use it but need some other way to find its pdf.

To find its sampling distribution, simulate the data with a
Monte Carlo program, i.e., generate ni ~Poisson(νi) for i = 1,...,N

Here data sample simulated 106

times.  The fraction of times we 
find χ2 > 29.8 gives the  p-value:

 p = 0.11

If we had used the chi-square pdf
we would find p = 0.073.
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The ‘χ2 per degree of freedom’
Recall that for the chi-square pdf for N degrees of freedom,

This makes sense:  if the hypothesized νi are right, the rms 
deviation of ni from νi is σi, so each term in the sum contributes ~1.

One often sees χ2/N reported as a measure of goodness-of-fit.
But...  better to give χ2 and N separately.  Consider, e.g.,

i.e. for N large, even a χ2 per dof only a bit greater than one can
imply a small p-value, i.e., poor goodness-of-fit.
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Statistical Data Analysis
Lecture 6-4

• Introduction to (frequentist) parameter estimation

• The method of Maximum Likelihood

• MLE for exponential distribution
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Parameter estimation
The parameters of a pdf are any constants that characterize it, 

r.v.

Suppose we have a sample of observed values: x = (x1, ..., xn)

parameter

We want to find some function of the data to estimate the 
parameter(s):

←  estimator written with a hat

Sometimes we say ‘estimator’ for the function of x1, ..., xn;
‘estimate’ for the value of the estimator with a particular data set.

i.e., θ indexes a
set of hypotheses.
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Properties of estimators
If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

We want small (or zero) bias (systematic error):

→  average of repeated measurements should tend to true value.

And we want a small variance (statistical error):
→  small bias & variance are in general conflicting criteria

biasedlarge
variance

best
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An estimator for the mean (expectation value)

Parameter:

Estimator:

We find:

(‘sample mean’)

Suppose we have a sample of n independent values x1,...,xn.
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An estimator for the variance

Parameter:

Estimator:

(factor of n-1 makes this so)

(‘sample
variance’)

We find:

where
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The likelihood function
Suppose the entire result of an experiment (set of measurements)
is a collection of numbers x, and suppose the joint pdf for
the data x is a function that depends on a set of parameters θ:

Now evaluate this function with the data obtained and
regard it as a function of the parameter(s).  This is the 
likelihood function:

(x constant)
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The likelihood function for i.i.d.*. data

Consider n independent observations of x:  x1, ..., xn,  where 
x follows f (x; θ).  The joint pdf for the whole data sample is:

In this case the likelihood function is

(xi constant)

* i.i.d. = independent and identically distributed



34G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 6

Maximum Likelihood Estimators (MLEs)
We define the maximum likelihood estimators or MLEs to be 
the parameter values for which the likelihood is maximum.

Maximizing L equivalent
to maximizing log L

Could have multiple maxima (take highest).

MLEs not guaranteed to have any ‘optimal’ properties, (but 
in practice they’re very good).
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MLE example:  parameter of exponential pdf

Consider exponential pdf,

and suppose we have i.i.d. data,

The likelihood function is

The value of τ for which L(τ) is maximum also gives the 
maximum value of its logarithm (the log-likelihood function):
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MLE example:  parameter of exponential pdf (2)

Find its maximum by setting 

→

Monte Carlo test:  
 generate 50  values
 using τ = 1:

We find the ML estimate:
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MLE example:  parameter of exponential pdf (3)

For the MLE

For the exponential distribution one has for mean, variance:

we therefore find

→

→
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Extra slides
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Software for Machine Learning
We will practice ML with the Python package scikit-learn

  scikit-learn.org  ← software, docs, example code

scikit-learn built on NumPy, SciPy and matplotlib, so you need
import scipy as sp
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

and then you import the needed classifier(s), e.g.,
from sklearn.neural_network import MLPClassifier

For a list of the various classifiers in scikit-learn see the docs
on scikit-learn.org, also a very useful sample program: 

http://scikit-
learn.org/stable/auto_examples/classification/
plot_classifier_comparison.html
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Example:  the data
We will do an example with data corresponding to events
of two types:  signal (y = 1, blue) and background (y = 0, red).

Each event is characterised by 3 
quantities:  x = (x1, x2, x3).

Components are correlated.

Suppose we have 1000 events 
each of signal and background.



Statistical Data Analysis / lecture week 6 41G. Cowan / RHUL Physics

Reading in the data
scikit-learn wants the data in the form of numpy arrays:

#  read the data in from files, 
# assign target values 1 for signal, 0 for background
sigData = np.loadtxt('signal.txt')
nSig = sigData.shape[0]
sigTargets = np.ones(nSig)
bkgData = np.loadtxt('background.txt')
nBkg = bkgData.shape[0]
bkgTargets = np.zeros(nBkg)

# concatenate arrays into data X and targets y
# split into two parts:  use one for training, the other for testing
X = np.concatenate((sigData,bkgData),0)
y = np.concatenate((sigTargets, bkgTargets))

# split data into training and testing samples
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, 
           random_state=1)
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Create, train, evaluate the classifier
Create an instance of the MLP (multilayer perceptron) class
and “train”, i.e., adjust the values of the weights to minimise
the loss function.  

Here we request 3 hidden layers with 10  nodes each:
# create classifier object and train
clf = MLPClassifier(hidden_layer_sizes=(10,10,10), activation='tanh',

max_iter=2000, random_state=6)
clf.fit(X_train, y_train)

# evaluate its accuracy (= 1 – error rate) using the test data 
y_pred = clf.predict(X_test)
print(metrics.accuracy_score(y_test, y_pred))

Use test data to see what fraction of events are correctly classified
(default takes threshold of 0.5 for decision function)
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Evaluating the decision function

# Test evaluation of decision function for a specific point in feature space
xt = np.array([0.37, 2.46, 0.42]).reshape((1,-1))
#t = clf.decision_function(xt)[0]            # not available for MLP
t = clf.predict_proba(xt)[0, 1] # for MLP use this instead

So now for any point (x1, x, x3) in the feature space,
we can evaluate the decision:

Usually we have an array of points in x-space,  so we can
get an array of probabilities:

t = clf.predict_proba(X_test)[:, 1]           # returns prob to be of type y=1 

Can get this separately for the signal and background events
and make histograms (see sample code).

Note for most other classifiers, the decision function is called
decision_function – use this instead of predict_proba.
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On defining a p-value
Earlier it was argued that the region of “equal or lesser compatibility” with H 
had greater compatibility with the predictions of some alternative hypothesis.

But shouldn’t it be possible to identify such a region by using the pdf f (x|H)?

In general, no.

Consider cubic crystal grains 
produced by a process H that 
have a size distribution

If we observe a value xobs, naively we could regard x ≤ xobs as constituting equal 
or less agreement with the predictions of f (x|H).

Observe grain of uncertain origin, 
measure x, 
find p-value of H.
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On defining a p-value (2)
But suppose we took the volume v = x3 of the cube to represent its size.
The volume distribution is 

So now it appears that smaller sizes are more compatible with H.

Conclusion:  deciding what region of data space constitutes greater or lesser
compatibility with H cannot be done by looking at the data distribution alone; 
it requires that one consider an alternative H’.
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https://imgs.xkcd.com/comics/significant.png


