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Statistical Data Analysis
Lecture 7-1

• Reminder of maximum likelihood

• The information inequality

• Large-sample properties of MLEs
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Reminder of maximum likelihood

The estimators for parameters θ are defined to be the values
that maximize the likelihood function L(θ) = P(x|θ):
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Reminder of MLE for exponential

Exponential pdf, ,    i.i.d. data

Likelihood function:

Log-likelihood function:

MLE:
Bias:

Variance: 

Set and solve for τ.
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The information inequality

The information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE).  For a single parameter:

= MVB    (Minimum 
                  Variance Bound)

Proof in Exercise 6.6 of SDA, https://www.pp.rhul.ac.uk/~cowan/sda/prob/prob_6.pdf 

“Efficiency” of an estimator = MVB / actual variance.

An estimator whose variance equals the MVB is said to be efficient.  

where 
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MVB for MLE of exponential parameter

We found for the exponential parameter the MLE 

and we showed b = 0, hence 𝜕b/𝜕τ = 0.

Find 

We find

and since E[ti] = τ for all i,

and therefore So here the MLE is efficient..

,
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Large-sample (asymptotic) properties of MLEs

Suppose we have an i.i.d. data sample of size n:  x1,...,xn

In the large-sample (or “asymptotic”) limit (n → ∞) and assuming 
regularity conditions one can show that the likelihood and MLE 
have several important properties.

The regularity conditions include:  

• the boundaries of the data space cannot depend on the 
parameter;

• the parameter cannot be on the edge of the parameter space;

• ln L(θ) must be differentiable;

• the only solution to 𝜕ln L/𝜕θ = 0 is θ.
^

In the slides immediately following, the properties are shown 
without proof for a single parameter; the corresponding 
properties hold also for the multiparameter case, θ = (θ1,..., θm).
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log-likelihood becomes quadratic

The likelihood function becomes Gaussian in shape, i.e. 
the log-likelihood becomes quadratic (parabolic).

The MLE becomes increasingly precise as the (log)-likelihood 
becomes more tightly concentrated about its peak,
but L(θ) = P(x|θ) is the probability for x, not a pdf for θ.
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The MLE converges to the true parameter value

In the large-sample limit, the MLE converges in probability
to the true parameter value.

That is, for any ε > 0, 

The MLE is said to be consistent.
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MLE is asymptotically unbiased

In general the MLE can be biased, but in the large-sample limit, 
this bias goes to zero:

(Recall for the exponential parameter we found the bias was
identically zero regardless of the sample size n.)
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The MLE’s variance approaches the MVB

In the large-sample limit, the variance of the MLE approaches 
the minimum-variance bound, i.e., the information inequality 
becomes an equality (and bias goes to zero):

The MLE is said to be asymptotically efficient.
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The MLE’s distribution becomes Gaussian

In the large-sample limit, the pdf of the MLE becomes Gaussian,  

For example, exponential MLE 
with sample size n = 100.

Note that for exponential, MLE 
is arithmetic average, so 
Gaussian MLE seen to stem 
from Central Limit Theorem.

where is the minimum variance bound (note bias is zero).
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Distribution of MLE of exponential parameter
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Statistical Data Analysis
Lecture 7-2

• Finding the variance of MLEs

• Information inequality for multiple parameters

• MLEs for 2-parameter example
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Variance of estimators:  Monte Carlo method

Having estimated our parameter we now need to report its
‘statistical error’, using e.g. the estimator’s standard deviation, or 
(co)variance. 

It is usually not possible to do this with an exact calculation.

Another way is to simulate the 
entire experiment many times with 
a Monte Carlo program (use ML 
estimate for MC).

For exponential example (n=50), 
from sample variance of estimates 
we find:
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Variance of estimators from information inequality
Recall the information inequality (RCF) sets a lower bound on the 
variance of any estimator (not only MLE):

Often the bias b is small, and equality either holds exactly or
is a good approximation (e.g. large data sample limit).   Then,

Estimate this using the 2nd derivative of  ln L at its maximum:

MVB 
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Variance of estimators: graphical method

Expand ln L () about its maximum:

First term is ln Lmax, second term is zero, for third term use 
information inequality (assume equality):

→  to get , change  away from until ln L decreases by 1/2.
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Example of variance by graphical method

ML example with exponential:

Not quite parabolic ln L since finite sample size (n = 50).
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Information inequality for N parameters

Suppose we have estimated N parameters θ = (θ1,...,θN)   

The Fisher information matrix is

The information inequality states that the matrix

and the covariance matrix of estimators θ is 
^

is positive semi-definite:  

 zTMz ≥ 0 for all z ≠ 0, diagonal elements ≥ 0  
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Information inequality for N parameters (2)

In practice the inequality is ~always used in the large-sample limit:

 bias → 0

 inequality → equality, i.e, M = 0, and therefore V = I−1

That is, 

This can be estimated from data using

Find the matrix V−1 numerically (or with automatic differentiation),
then invert to get the covariance matrix of the estimators
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Example of MLEs for two parameters

Consider two independent i.i.d. samples:

→

→

The likelihood function and its log are:
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Example of MLEs for two parameters (2)

Set the derivatives of the log-likelihood function to zero:

Eq. (1)

Eq. (2)

From Eq. (2), find → use in Eq. (1)

Solve for the MLEs: , Not defined if n = 0.
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Bias of MLEs

For bias of θ ^

so 

Expectation of λ not calculable in closed form, could investigate
bias with Monte Carlo study: 

＾

Find cdf 

Set →

Generate a data set:
→

Repeat N times, estimate bias :

or use –θ ln r

Depends in general 
on n, m, λ, θ
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Covariance of MLEs from Fisher information

Find the 2nd 
derivatives of ln L

Using

find expectations:
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Covariance of MLEs from Fisher information (2)

For estimates of the covariances, evaluate with the MLEs.



26G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 7

Statistical Data Analysis
Lecture 7-3

• Numerical example of 2-D MLE

• The ln L = ln Lmax – ½ contour

• MLE for function of a parameter
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Example of ML with 2 parameters

Consider a scattering angle distribution with x = cos ,

or if xmin < x < xmax, need to normalize so that 

Example:   = 0.5,  = 0.5, xmin = −0.95, xmax = 0.95, 

generate n = 2000 events with Monte Carlo.

need to find maximum
numerically
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Example of ML with 2 parameters:  fit result

Finding maximum of ln L(, ) numerically gives

N.B.  No binning of data for fit,
but can compare to histogram for
goodness-of-fit (e.g. ‘visual’ or 2). 

(Co)variances from

=   correlation coefficient
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Two-parameter fit:  MC study

Repeat ML fit with 500 experiments, all with n = 2000 events:

Estimates average to ~true values;
(Co)variances close to previous estimates;
marginal pdfs approximately Gaussian.
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Multiparameter graphical method for variances

Expand ln L(θ) to 2nd order about MLE:

relate to covariance matrix of 
MLEs using information 
(in)equality.

ln Lmax zero

Result: 

So the surface corresponds to

,  which is the equation of a (hyper-) ellipse.
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Multiparameter graphical method (2)

Distance from MLE to tangent planes gives standard deviations.
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The ln Lmax − 1/2 contour for two parameters

For large n, ln L takes on quadratic form near maximum:

The contour is an ellipse:
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(Co)variances from ln L contour

→ Tangent lines to contours give standard deviations.

→ Angle of ellipse φ related to correlation:

The ,  plane for the first
MC data set
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Functions of maximum-likelihood estimators

Suppose likelihood has a parameter θ.

Define a new parameter α given by function α = a(θ).

What is the MLE of α?

For now suppose a(θ) has a unique inverse, so θ = a−1(α).

The likelihood is L(θ) = L(a−1(α)).

The maximum of the likelihood is Lmax = L(θ).

So to maximize L, find α ≡ α such that 

^

^

MLE of a function is the function of the MLE.  

Still works when function is not one-to-one.  Very useful result.
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Functions of MLEs: exponential example

Suppose we had written the exponential pdf as

i.e., we use λ = 1/τ.  What is the MLE estimator for λ?

For the decay constant we have

Caveat:   is biased, even though is unbiased.

(bias → 0 for n → ∞)Can show

In general MLE for a function of an unbiased estimator stays 
unbiased only for a linear function.
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Statistical Data Analysis
Lecture 7-4

• Extended maximum likelihood

• Maximum likelihood with a histogram of data

• Relationship between MLE and Bayesian estimator
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Extended ML
We observe n independent values of x ~ f(x;θ).  

Suppose we regard n not as fixed, but as a Poisson r.v., mean ν.

Result of experiment defined as: n, x1, ..., xn.

P(n,x) = P(n) P(x|n), so the (extended) likelihood function is:

Suppose theory gives ν = ν(θ), then the log-likelihood is 

where C represents terms not depending on θ.
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Extended ML (2)

Extended MLE uses information both from the number 
of events n as well as the observed values of x.

→ smaller errors for        (compared to using x alone).

Example:  expected number of events 

where the total cross section σ(θ) is predicted as a function of

the parameters of a theory, as is the distribution of a variable x. 

If ν does not depend on θ but remains a free parameter,
extended ML gives: 
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ML with binned data

Often put data into a histogram:

Hypothesis specifies where

If we model the data as multinomial (ntot constant),  

then the log-likelihood function is:
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Example with binned data

Previous example with exponential, now put data into histogram:

Limit of zero bin width → usual unbinned MLE.

If ni treated as Poisson, we get extended log-likelihood:

Binning results in loss of 
information, increased std. dev. 
of MLE.
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Relationship between ML and Bayesian estimators

Recall the Bayesian approach:

Both parameters θ and data x are random variables.

Use subjective probability for hypotheses (θ);

before experiment, knowledge summarized by prior pdf π(θ);

use Bayes’ theorem to update prior in light of data:

Posterior pdf (conditional pdf for θ given x)
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ML and Bayesian estimators (2)

Purist Bayesian:  p(θ | x) contains all knowledge about θ.

Pragmatist Bayesian:  p(θ | x) could be a complicated function,

→ summarize using an estimator 

Take mode of p(θ | x),  (could also use e.g. expectation value)

What do we use for π(θ)?  
No golden rule (subjective!), 
often represent ‘prior ignorance’ 
by π(θ) = constant, in which case
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ML and Bayesian estimators (3)

Note () = const. cannot be normalized –  “improper prior”.

Can be allowed for some problems; prior always appears multiplied
by likelihood, so product L(θ)πθ(θ) can result in normalizable 
posterior probability.

But... we could have used a different parameter, e.g., λ= 1/,

and if prior () is constant, then πλ(λ) is not: 

‘Complete prior ignorance’ 
is not well defined.

Maybe we know say we nothing about λ, so take πλ(λ) = const.

Then
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Extra slides
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Graphical method for standard deviations
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MLE for number of taxis

The number plate of taxis in 
every canton in Switzerland 
ends with a number N from 1 
to Ntot, where Ntot is the total 
number of taxis.

Model the probability for observing plate number N with
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MLE for Ntot

Suppose you observe one taxi at random with plate number N.

For better estimators, see similar problem with tanks in WW2:  
https://en.wikipedia.org/wiki/German_tank_problem

E.g. the minimum-variance unbiased estimator is:

The likelihood function is

which is maximized for

The expectation value and bias of the MLE are
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Cheap estimator for mass of W boson

The Particle Physics community has spent huge sums trying to
estimate the mass of the W boson with the smallest possible
statistical and systematic uncertainty.

Here is an estimator with zero statistical uncertainty.  And it’s free! 

Here is its sampling distribution:

Does this violate the information
inequality?
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Cheap estimator for mass of W boson (2)

Note best estimate of MW is (in 2020) 
80.379±0.012 GeV, so the numerical
value of the bias may be fairly small.

This estimator’s bias is

So the information inequality is still satisfied.

But we have and so 
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Extended ML example

Consider two types of events (e.g., signal and background) each 
of which predict a given pdf for the variable x:  fs(x) and fb(x).

We observe a mixture of the two event types, signal fraction = , 

expected total number = ν, observed total number = n.

Let goal is to estimate s, b.

→
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Extended ML example (2)

Maximize log-likelihood in 
terms of μs and μb:

Monte Carlo example
with combination of
exponential and Gaussian:

Here errors reflect total Poisson
fluctuation as well as that in 
proportion of signal/background.
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