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Statistical Data Analysis
Lecture 9-1

e |east squares with histogram data
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LS with histogram data

The fit function in an LS fit is not a pdf, but it could be proportional
to one, e.g., when we fit the “envelope” of a histogram.

Suppose for example, we have an i.i.d. data sample of n values
X1,...» X, Sampled from a pdf f(x;#). Goal is to estimate 6.

Instead of using all n values, put them in a histogram with N bins,
i.e., Yi = number of entries in bin 1: Y = (Yq,..., Y))-

The model predicts mean values:
Ely:) = pi(0)
=n f(x;0)dx
binz

~nf(x;0)Ax

60

N w = u
o o o o
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LS with histogram data (2)

The usual models:

for fixed sample size n, take y ~ multinomial,
if N not fixed, y; ~ Poisson(u;)

Suppose that the expected number of entries in each y; are all > 1
and probability to be in any individual bin p; << 1, one can show

— Y indep. and ~ Gauss with g; = \/,ui. (— o; depends on 6).

The (log-) likelihood functions are then

H —(yi—uz‘(ﬁ’))Q/?U?(@)
\/27Tc7Z
N N
1 i — 1i(0))?
InL(0) = —5 Z y az-(l;)(Q )" Zlnai(é’) +C
i=1 =1
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LS with histogram data (3)
Still define the least-squares estimators to minimize

N
2 . (s M@(Q))Q

No longer equivalent to maximum likelihood (equal for (; > 1).

Two possibilities for o;:
o: = \1;(0) (LS method)
0; = \/yi (Modified LS method)

Modified LS can be easier computationally but not defined if
anyy; =0.

For either method, y2,;, ~ chi-square pdf for x; > 1, but this
breaks down for when the x; are not large.
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LS with histogram data — normalization

Do not “fit” the normalization, i.e., N — free parameter v:

pi(@,v) =v | f(x;0)de

bin?
If you do this, one finds the LS estimator for v is not n, but rather
2

Xmin

2

Urs =n +

A 2
UVMLS = T — Xmin

Software may include adjustable normalization parameter as
default; better to use known n.
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LS normalization example

Example with n = 400 entries, /N = 20 bins:

Vix)

- —— data (400 entries)
——— LS 4% =17.3, v = 400 (fixed)

ML: xz=17.6,v=400.0+200

= 60 I data (400 entries) (@) 60
C—— LS 4?=171,9=4085+202
---------- MLS: 32=17.8,7=3822+195
40 F - 40
20 20
D | | |
15 2

Expect X?ﬂin around N — m,

(b)

— relative error in  large when N large, n small

Either get n directly from data for LS (or better, use ML).
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Statistical Data Analysis
Lecture 9-2

e Goodness-of-fit from the likelihood ratio
e Wilks’ theorem

e MLE and goodness-of-fit all in one
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Goodness of fit from the likelihood ratio

Suppose we model data using a likelihood L(u) that depends on N
parameters u = (uy,..., ). Define the statistic

L(p)
L(f)

where gz is the ML estimator for u. Value of t, reflects agreement
between hypothesized 4 and the data.

t, = —2In

A .
Good agreement means u =~ u, so t, is small;

Larger t, means less compatibility between data and u.

Quantify “goodness of fit” with p-value: p,, = / f(t.lp)dt,

t;_.r, ,obs

need this pdf
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Likelihood ratio (2)

Now suppose the parameters u = (u4,..., ity) can be determined by
another set of parameters € = (6,,..., 6,,), with M < N.

E.g., curve fit with g = E[y;] = u(x; 8),1=1,....N, 8 = (64,..., O).

Want to test hypothesis that the true model is somewhere in the
subspace u = u(0) versus the alternative of the full parameter
space u. Generalize the LR test statistic to be

it M
/flt parameters

™ fit N parameters

To get p-value, need pdf f(t,|u(0)).

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9 10



Wilks’ Theorem

Wilks’ Theorem: if the hypothesized 1;(#), 1 = 1,...,N, are true for
some choice of the parameters @ = (0,,..., 6y,), then in the large
sample limit (and provided regularity conditions are satisfied)

~ MLE of (64,..., 6)

f— _91n L(M( )) follows a chi-square distribution for
Kr L(

ft) N — M degrees of freedom.
\

MLE of (uy,..., tty)
The regularity conditions include: the model in the numerator of
the likelihood ratio is “nested” within the one in the denominator,
i.e., u(0) is a special case of u = (uy,..., Uy)-

Proof boils down to having all estimators ~ Gaussian.
S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.
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Wilks” Theorem (2)

To find pe = / f(tu|n(0))dt, e.g. with Monte Carlo we

tp,0bs

would need to choose a pointin & space, then p =maxpsg

But if we can use Wilks’, the chi-square dist. should hold for all 6.

The chi-square pdf for —2InA breaks down:
if the sample size is too small;
if the true value of a parameter is on the boundary of the
allowed parameter space;
if the model in the numerator is not a special case of the
denominator (models must be “nested”);

if variance of estimators of any components of u too large
(e.g., parameter refers to location of a feature not present
in the null hypothesis, such as the position of a peak).
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Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:
y; ~ Gauss(ui, ;) , i=1,....N

/

want to estimate known

N measurements and N parameters ( = “saturated model”)

N
1 2 /o2
Likelihood: L = e~ (Wi—pi)”/20;
(1) E[l o,
1N (u — )2
Log-likelihood: InL(p)=—= Z (b QM} +C
23 9
ML estimators:  fi; = v; i=1,...,N
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Likelihood ratio for Gaussian data
Now suppose u = u(0), e.g., in an LS fit with 1;(0) = u(x;; 0).

The goodness-of-fit statistic for the test of the hypothesis
u(60) becomes

' 2
2 ~ XN—M

L(f) - P 9;
/

chi-square pdf for N-M
degrees of freedom

Here t, is the same as x4, from an LS fit.

So Wilks’ theorem formally states the property that we claimed
for the minimized chi-squared from an LS fit with N
measurements and M fitted parameters.
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Likelihood ratio for Poisson data

Suppose the data are a set of values n = (n,..., n,), e.g., the
numbers of events in a histogram with N bins.

Assume n; ~ Poisson(v;), 1 =1,..., N, all independent.

First (for LR denominator) use saturated model, i.e., treat
v = (vy4,..., vy) as all adjustable:

N Ty
Likelihood: Lv) =[] 2

1L n.l
i=1 ¢t

N
Log-likelihood: InL(v) = Z n;Iny; — ) +C
i=1

ML estimators: U; =mn; i=1,...,.N
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Goodness of fit with Poisson data (2)

For LR numerator find v(@) with M fitted parameters 8 = (6,,..., O\):

—vi(0) +
if n; = 0, skip log term

Wilks’ theorem: in large-sample limit ., ~ X%\I—M

Exact in large sample limit; in practice good approximation for
surprisingly small n; (~several).

As before use t,to get p-value of v(0),
/ independent of @

po= [ FO) dty =1 = Flty i N = M)
t

v ,0bs
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Goodness of fit with multinomial data

Similar if data n = (ny,..., ny) follow multinomial distribution:

Ntot!
Hllﬂg! “ e

P(n|p,niot) = HN!pTlpEﬂ DAY

N
E.g. histogram with N bins but fix:  ntot = Z N
i=1

N
Log-likelihood: InL(v) = Z n; In * +C (Vi = piTtot)
ML estimators: ; = n; (Only N—1 independent; one

iS Ny, Minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

t, = —2In

L(D) n
AN

A N A
L(v(0)) _ _9 an In Vz(g)
1=1 t

if n; =0, skip term

Wilks: in large sample limit ¢, ~ X%\I—M—l

One less degree of freedom than in Poisson case because
effectively only N—1 parameters fitted in denominator of LR.
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Estimators and g.o.f. all at once

Evaluate numerators with @ (not its estimator); if any n, = 0,
omit the corresponding log terms:

XEP (6) = —QZ {n@ In Vi (9) —v;(0) + m] (Poisson)
i=1
xm(0) = —QZ n;In HE(Q) (Multinomial)

These are equal to the corresponding —2 In L(0) plus terms not
depending on 8, so minimizing them gives the usual ML
estimators for 6.

The minimized value gives the statistic {,, so we get
goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and
likelithood functions in fits to histograms, NIM 221 (1984) 437.
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Examples of ML/LS fits

Unbinned maximum likelihood (mlFit.py, minimize neglLogl)

0.16 1

0.14 1

0.12 1

0.10 1

f(x; )

0.06 1

0.04 1

0.02 1

G. Cowan / RHUL Physics

0.08 1

In L(0) = i:ln f(x;;0
=1

6 =0.2046+0.0527
IIIIIIIII III 1T |IIII Il II|| 01 A T ,
. 100 125 150 17.5
X

20.0
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No useful measure
of goodness-of-fit
from unbinned ML.
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Examples of ML/LS fits

Least Squares fit (histFit.py, minimize chi2LS)

N 2
2(9) — (yi — pi(60))
X“(0) = 1;(0)
i—1 ‘
20.0 -
Least Squares
17.51 6 =0.1449+0.0484
8 15.01
= 12.5—\
©10.01 H:
(O]
O
e 7.5-
2
5.0
2.5
0.0 ' -
0 4 8 12 16 20

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

szin =32.7
Nor = 38
p=0.71

Many bins with few
entries, LS not
expected to be

- reliable.
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Examples of ML/LS fits

Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

—ZZ n; In

V; (9

. . 2
20 I\A/IaX|mum Likelihood X min = 35.3
6=0.2015+0.0530 Ngot = 37
(2]
£ 15- p=0.55
c
()
kS
910 Essentially same result
& .
> as unbinned ML.
5_
= M i
0 ! 1 1
0 12 16 20
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Statistical Data Analysis
Lecture 9-3

e |nterval estimation
e Confidence interval from inverting a test

e Example: limits on mean of Gaussian
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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 6 (do this for all §):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region|60) < a
for a prespecified ¢, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now invert the test to define a confidence interval as:

set of @ values that are not rejected in a test of size a
(confidence level CLis 1—a).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,.

If py < a, then we reject 6.

The confidence interval at CL = 1 — & consists of those values of
6 that are not rejected.

E.g. an upper limit on @ is the greatest value for which p, > a.
In practice find by setting p, = a and solve for 6.

For a multidimensional parameter space 6 = (6,,... 6),) use same
idea — result is a confidence “region” with boundary determined

by p,y = o.
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Coverage probability of confidence interval

If the true value of @ is rejected, then it’s not in the confidence
interval. The probability for this is by construction (equality for

continuous data):
P(reject 8]|6) < a = type-l error rate

Therefore, the probability for the interval to contain or “cover” 6 is
P(conf. interval “covers” 816)> 10 «a

This assumes that the set of @ values considered includes the true
value, i.e., it assumes the composite hypothesis P(x|H,6).
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Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to
maximize the power with respect to the relevant alternative(s).

Example: X ~ Gauss(u, o) (take o known)

Test H, : 1 = ug versus the alternative H, : u < ug

, W
— Put w, at region of X-space »
characteristic of low y (i.e. at low x) ;
A /Ao i

Equivalently, take the p-value to be

Lobs 1 —(p— 2/9+2 Tobs — MO
pp,o — P($ S ZCObS“j’O) — \/%0-6 ( MO) /2 d$ — (I)( o SJ H )
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Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all y,, i.e., set P =@ and
solve for u, to find the interval’s boundary

P,
L /1

-y

Mo — Hup = Tobs — O'(I)_l(a) = Tobs T U(I)_l(l R 05)
This is an upper limit on x4, i.e., higher ¢ have even lower p-value

and are in even worse agreement with the data.

Usually use @ (a) = —®1(1-«) so as to express the upper limit as
Xohs PlUS @ positive quantity. E.g. for a = 0.05, ®1(1-0.05) = 1.64.
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Upper limit on Gaussian mean (3)

Uy, = the hypothetical value of u such that there is only a
probability a to find X < X.

)‘/’0b5

1T —

‘/7'{6“,

0&: 0.05

L *
S

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9 29



1- vs. 2-sided intervals
Now test: Hy : i = iy versus the alternative Hy @ 1 # ug

|.e. we consider the

alternative to y, to include Wy,
higher and lower values,

so take critical region on 2
both sides: .

Result is a “central” confidence interval [, 1]

_ -l _ Q)
Hlo = Ziobs — 0% (1 2 E.g. for a =0.05
1 (1-2)=1.96~2
[up = Tobs T od1 (1 — %) ( 2)

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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On the meaning of a confidence interval

Often we report the confidence interval [a,b] together with the
point estimate as an “asymmetric error bar”, e.g.,

Ay d

6+ P

A
a- g-c

©>
N4

A + 0.%1
Eg (atCl=1-a=683%): fH= B80-L9% _ | .«

Does this mean P(80.00 < # < 80.56) = 68.3%? No, not for a
frequentist confidence interval. The parameter 6 does not fluctuate
upon repetition of the measurement; the endpoints of the interval

do, i.e., the endpoints of the interval fluctuate (they are functions of

data):
) \J(MQLQLB(*)yz\—o«
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Example with binomial parameter

Suppose m ~ Binomial(N,8) with N trials (known)and success
probability per trial 8 (unknown). We observe a single value m.

The likelihood function is

N!
m!(N — m)!

L(O) — P(mlN, 9) = 9m(1 _ O)N_m

so the log-likelihood is InL(f) =mmn6+ (N —m)In(1 - 6) +C

Set its derivative to zero Oln L _m_ N-—m =(

00 6 0

to findthe MLE ="
N

Since V[m|=N6(1—-0) — %:%\/9(1—9) — 69:%\/%(1_%)
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Limits on binomial parameter

To give the MLE and a 68.3% central confidence interval, it is
often sufficient to report 8 +o;.

Suppose we find m,,. and we want to know an upper limit on 6.

To quantify how big & could be, find upper limit at CL = 1-a = 95%.

Mobs N!
Py = P(m < mopslf) =

m=0

m!(N — fm,)!‘gm(1 -

Set pg=oa andsolve for 6 — 0,

Can be done in closed form; see PDG Eqg. (40.83):

- (m+ 1)Fz'1 — a;2(m +1),2(N —m)] sjlli/aellzvg:;t
up — _
(N —m) + (m+ 1)FF1[1 —a;2(m+1),2(N — m)] computer

where F is the Fisher-Snedecor distribution .
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Upper limit for 6 form . =0

Suppose we find m,,, = 0.

=0 makes sense

65=0 not incorrect but does not provide a useful interval

For the p-value (for upper limit) we find

0

=Y G- 0" = a-0"

m=0

Set pg=a and solving for 6 gives the upper limit 6w, =1 — /¥

For example, N =20,a=0.05,— 6,, =0.14 at95% CL.
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Statistical Data Analysis
Lecture 9-4

e Confidence intervals from the likelihood function
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Approximate confidence intervals/regions
from the likelihood function

Suppose we test parameter value(s) @ = (64, ..., 6y) using the ratio
L(#)
L(0)

Lower A(#) means worse agreement between data and
hypothesized 8. Equivalently, usually define

A(6) = 0<AB) <1

te = —2InA(0)
so higher t, means worse agreement between @ and the data.

o0

p-value of @ therefore Po = f(te|0) dte
tﬂ,obs \
need pdf
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Confidence region from Wilks’ theorem

Wilks” theorem says (in large-sample limit and provided
certain conditions hold...)

chi-square dist. with # d.o.f. =
# of componentsin @ = (64, ..., 6y).

f(tol€) ~ xn
Assuming this holds, the p-value is
Po =1—F (tg|0) « setequaltoa

To find boundary of confidence region set p,= a and solve for t,:

to = F 5 (1 —a)
XN

Recall also tg = —2In —
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Confidence region from Wilks” theorem (cont.)
i.e., boundary of confidence region in @ space is where
InL(0) = InL() — LF, (1 — @)
XN
For example, for 1 —a = 68.3% and n = 1 parameter,
F10.683) =1
X1

and so the 68.3% confidence level interval is determined by

1
2
Same as recipe for finding the estimator’s standard deviation, i.e.,

InL(f) = In L(6) —

]

0 — oy, 0+ 05] isa68.3% CL conf. interval (in large sample limit).
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Example of interval from In L(6)

For N =1 parameter, CL = 0.683, Q, = 1.

= | | |
~]
2 4t | Our exponential
example, now with
only n =5 events.
Can report ML estimate
45 L | with approx. confidence
interval from In L., — 1/2
as “asymmetric error bar”:
s = 0851433
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For increasing number of parameters, CL = 1 — a decreases for

Multiparameter case

confidence region determined by a given

Qa :F}éll(l_&)

1l — o
Qa n=1 n=2 n=3 n= n=>o
1.O | 0.683 0.393  0.199  0.090  0.037
2.0 | 0843 0.632 0428 0.264  0.151
4.0 | 0.934  0.865  0.739  0.594  (.451]
Q.0 | 0.997  0.989 0971  0.939  0.891

G. Cowan / RHUL Physics
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Multiparameter case (cont.)

Equivalently, Q, increases with n for a given CL=1 — a.

Qa
n=1 n=2 n=J3 n=4 n=5 «#ofpar
0.683 [ 1.00 2.30 3.53 4.72 2.8
(.90 2.71 4.61 6.25 T.75 .24
(.95 5584 2.94 T.82 .44 11.1
(.94 6.63 0.21 11.3 13.3 15.1

1 -«
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Example: 2 parameter fit:

Example from problem sheet 8, i.i.d. sample of size 200

X~ F(2:0,) = 0t e~=m/20% L (1 _ gy Lo/

V2ro

S| =

0.16 1 0 =0.2046+0.0527

0.14 £=5.1079+0.6446
Here fit two
parameters:
6 and ¢.

0.12 4

0.06 1

0.04 1

0.02 -

0.00, lIlIJHﬂlIlIHﬂIIIHJﬂHHHHIJHHlHLHLHHLH_lIIHIIlUJJILLJJIIIIIIIIIII LI

10.0 125 150 17.5 20.0
X
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Example: 2 parameter fit:

In iminuit v2, usercansetCL=1 —«

m.draw_mncontour('theta', 'xi', cl=[0.683, 0.95], size=200)

INL =1INLmax —3F2 (1 —a; n)

7.0
6.5 -

6.0 -

5.0

4.0 -

010 0.15 020 025 0.30
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Comments on using iminuit

0.16 6 =0.2046+0.0527

In our earlier iminuit example - =5 1070206446
mlFit.py, the only argument of o1z
the log-likelihood function was  _o.o.
the parameter array, and the < 0.08;
data array xData entered as "
global (usually not a good idea):

0.04 -

0.02 1

0.0 MIMRINRILR0RDL IOAREA AR MO mcanih e

Il
00 25 50 75 100 125 150 175 20.0
X

def negLogL(par):
pdf = f(xData, par)
return —np.sum(np.log(pdf))

m = Minuit(neglLoglL, par, name=parname)
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InL in a class, binned data,...

Sometimes it is convenient to have the function being
minimized as a method of a class. An example of this is shown
in the program histFit.py, which does the same fit as in mlFit.py
but with a histogram of the data:

20.0
Maximum Likelihood

17.51 6=0.2015+0.0530
$15.0
< 12.5-
©10.01
3
e 7.5
-} ™
< 501 N

25 | B
0.0 . . . H—H
0 4 8 12 16 20

X
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Commentary on histFit.py

The global data can be avoided if we make the objective function a
method of a class:

class ChiSquared: # function to be minimized

def __init__(self, xHist, bin_edges, fitType):
self.setData(xHist, bin_edges)
self.fitType = fitType

def setData(self, xHist, bin_edges):
numVal = np.sum(xHist)
numBins = len(xHist)
binSize = bin_edges[1] - bin_edges[0]
self.data = xHist, bin_edges, numVal, numBins, binSize

def chi2LS(self, par): # least squares
XHist, bin_edges, numVal, numBins, binSize = self.data
xMid = bin_edges[:numBins] + ©0.5%binSize
binProb = f(xMid, par)*binSize
nu = numValxbinProb
sigma = np.sqrt(nu)
Z = (xHist - nu)/sigma
return np.sum(z**2)
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class ChiSquared (continued)

def chi2M(self, par): # multinomial maximum likelihood
XHist, bin_edges, numVal, numBins, binSize = self.data
xMid = bin_edges[:numBins] + 0.5%binSize
binProb = f(xMid, par)*xbinSize
nu = numValxbinProb
InL = 0.
for 1 in range(len(xHist)):
if xHist[i] > @.:
InL += xHist[il*np.log(nulil/xHist[i])
return -2.x1nL

def __call__(self, par):

if self.fitType == 'LS':
return self.chi2LS(par)

elif self.fitType == 'M':
return self.chi2M(par)

else:
print("fitType not defined")
return -1

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9
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Using the ChiSquared class

# Put data values into a histogram

numBins=40

xHist, bin_edges = np.histogram(xData, bins=numBins, range=(xMin, xMax))
binSize = bin_edges[1] - bin_edges[0]

# Initialize Minuit and set up fit:

parin = np.array([theta, mu, sigma, xil) # initial values (here = true)
parname = ['theta', 'mu', 'sigma', 'xi']

parstep = np.array([0.1, 1., 1., 1.1) # initial setp sizes

parfix = [False, True, True, Falsel # change to fix/free param.

parlim = [(@.,1), (None, None), (0., None), (@., None)]
chisq = ChiSquared(xHist, bin_edges, fitType)
m = Minuit(chisq, parin, name=parname)

m.errors = parstep

m.fixed = parfix

m.limits = parlim

m.errordef = 1.0 # errors from chi2 = chi2min + 1

For full program see
https://www.pp.rhul.ac.uk/~cowan/stat/exercises/fitting/python/
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LS example: refraction data from Ptolemy

Astronomer Claudius Ptolemy obtained data on refraction of

light by water in around 140 A.D.:
Angles of incidence and

refraction (degrees)
0; incident ray

E'li 6}r

10 8
20 153
30 22

40 29

\ 50 35
copper disc 60 40%
refractedray / 0, ;g 4;}0%

Suppose the angle of incidence is set with negligible error, and
the measured angle of refraction has a standard deviation of ¥%°

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

50



Laws of refraction

A commonly used law of refraction was
0, = ab; |
although it is reported that Ptolemy preferred
0, = ab; — BO? .

The law of refraction discovered by Ibn Sahl in 984 (and
rediscovered by Snell in 1621) is

fr = sin~ (Siﬂgi)
r r .

where r = n/n; is the ratio of indices of refraction of the two media.
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60
data
50 _— er - (1’9. ]
lendof =134.6/7

2407 p=67x10%
&}
o 30 '
°
< 20 '

10 - .

0 : : : :
0 20 40 60 80

6; (degrees)
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LS fit: Qr — OCHi —ﬂ@iz

60
data
50{ = 6, =ab; — Bo?
X%/Ngot = 0.0/6

2407 p=10
Q
9 30
)
T 20

10 1

0 T T T T
0 20 40 00 80

8; (degrees)
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LS fit: Snell’s Law

00
data
50{ —— 6, =sin"1[(sind))/r] '
X2/ Ngor = 14.0/7
40 p=0.051

6, (degrees)
N W
o o

(I
o

0 20 40 60 80
6; (degrees)

Fitted index of refraction of water r =1.3116 == 0.0056 found not
quite compatible with currently known value 1.330.
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