Discussion session notes 14 Dec 2020

G. Cowan / RHUL Physics

PH4515 Problem Sheet 8

1a) [6 marks] Running the program mlFit.py produces the following plots:
A fit of the pdf:

A scan of -InL versus theta:

$$
\text { A contour of } \operatorname{InL}=\ln \operatorname{Lmax}-1 / 2: \quad 0.205 \quad 0.258
$$

ib) [6 marks]
lb) $V_{i j}^{\overrightarrow{1}}=-\int \frac{\partial^{2} \ln p(\vec{x} \mid \vec{\theta})}{\partial \theta_{i} \partial \theta_{j}} p(\vec{x} \mid \vec{\theta}) d \vec{x}$

$$
\begin{aligned}
& U_{s e} P(\vec{x} \mid \vec{\theta})=\prod_{i=1}^{n} f\left(x_{i} ; \vec{\theta}\right) \quad \text { i.i.d. sample } \\
\Rightarrow & V_{i j}^{-1}=-\int \frac{\partial^{2} \sum_{k=1}^{n} \ln f\left(x_{k} ; \vec{\theta}\right)}{\partial \theta_{i} \partial \theta_{j}} \times \prod_{l=1}^{n} f\left(x_{i} ; \vec{\theta}\right) d x_{l} \\
= & -\sum_{k=1}^{n} \underbrace{\int}_{a l l n} \underbrace{\frac{\partial^{2} \ln f\left(x_{k} ; \vec{\theta}\right)}{\partial \theta_{i} \partial \theta_{j}} f\left(x_{k} ; \vec{\theta}\right) d x_{k}}=\prod_{l \neq k} \int_{l} \underbrace{n} f\left(x_{i} ; \vec{\theta}\right) d x_{l} \\
= & -n \int \frac{\partial^{2} \ln f(x ; \vec{\theta})}{\partial \theta_{i} \partial \theta_{j}} f(x ; \vec{\theta}) d x
\end{aligned}
$$

αn

$$
V V^{-1}=I \quad \Rightarrow \quad V^{-1} \propto n, V \propto \frac{1}{n}
$$

$\sigma_{\hat{\theta}_{i}}=\sqrt{v_{i i}} \propto \frac{1}{\sqrt{n}}$ for all i

1(c) [6 marks] Running mlFit.py with different numbers of events gave:

numVal	thetaHat	sigma_thetaHat
100	0.197218	0.071219
200	0.204551	0.052736
400	0.160808	0.036985
800	0.198224	0.026129

A plot of sigma_thetaHat versus numVal is shown below. The standard deviation of the estimator is seen to decrease as $1 / \sqrt{ } n$, as expected.

1(d) [6 marks] The results of the fit with different combinations of parameters adjustable are:

Free	Fixed	sigma_thetaHat
theta	mu, sigma, xi	0.044535
theta, xi	mu, sigma	0.052736
theta, xi, sigma	mu	0.064456
theta, xi, sigma, mu	--	0.085786

As can be seen, the standard deviation of the estimator of theta increases when it is fitted simultaneously with an increasing number of other adjustable parameters.

Discussion Session Problem 1: The binomial distribution is given by

$$
P(n ; N, \theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n},
$$

where n is the number of 'successes' in N independent trials, with a success probability of θ for each trial. Recall that the expectation value and variance of n are $E[n]=N \theta$ and $V[n]=N \theta(1-\theta)$, respectively. Suppose we have a single observation of n and using this we want to estimate the parameter θ.
1(a) Find the maximum likelihood estimator $\hat{\theta}$.
(b) Show that $\hat{\theta}$ has zero bias and find its variance.

1(c) Suppose we observe $n=0$ for $N=10$ trials. Find the upper limit for θ at a confidence level of CL $=95 \%$ and evaluate numerically.
1(d) Suppose we treat the problem with the Bayesian approach using the Jeffreys prior, $\pi(\theta) \propto \sqrt{I(\theta)}$, where

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]
$$

is the expected Fisher information. Find the Jeffreys prior $\pi(\theta)$ and the posterior $\operatorname{pdf} p(\theta \mid n)$ as proportionalities.
1(e) Explain how in the Bayesian approach how one would determine an upper limit on θ using the result from (d). (You do not actually have to calculate the upper limit.)
Explain briefly the differences in the interpretation between frequentist and Bayesian upper limits.

Solution:

1(a) The likelihood function is given by the binomial distribution evaluated with the single observed value n and regarded as a function of the unknown parameter θ :

$$
L(\theta)=\frac{N!}{n!(N-n)!} \theta^{n}(1-\theta)^{N-n} .
$$

The log-likelihood function is therefore

$$
\ln L(\theta)=n \ln \theta+(N-n) \ln (1-\theta)+C,
$$

where C represents terms not depending on θ. Setting the derivative of $\ln L$ equal to zero,

$$
\frac{\partial \ln L}{\partial \theta}=\frac{n}{\theta}-\frac{N-n}{1-\theta}=0,
$$

we find the ML estimator to be

$$
\hat{\theta}=\frac{n}{N} .
$$

$\mathbf{1}(\mathbf{b})$ We are given the expectation and variance of a binomial distributed variable as $E[n]=$ $N \theta$ and $V[n]=N \theta(1-\theta)$. Using these results we find the expectation value of $\hat{\theta}$ to be

$$
E[\hat{\theta}]=E\left[\frac{n}{N}\right]=\frac{E[n]}{N}=\frac{N \theta}{N}=\theta
$$

and therefore the bias is $b=E[\hat{\theta}]-\theta=0$. Similarly we find the variance to be

$$
V[\hat{\theta}]=V\left[\frac{n}{N}\right]=\frac{1}{N^{2}} V[n]=\frac{N \theta(1-\theta)}{N^{2}}=\frac{\theta(1-\theta)}{N}
$$

$\mathbf{1 (c)}$ Suppose we observe $n=0$ for $N=10$ trials. The upper limit on θ at a confidence level of $\mathrm{CL}=1-\alpha$ is the value of θ for which there is a probability α to find as few events as we found or fewer, i.e.,

$$
\alpha=P(n \leq 0 ; N, \theta)=\frac{N!}{0!(N-0)!} \theta^{0}(1-\theta)^{N-0}
$$

Solving for θ gives the 95% CL upper limit

$$
\theta_{\text {up }}=1-\alpha^{1 / N}=1-0.05^{1 / 10}=0.26
$$

$\mathbf{1}(\mathbf{d})$ To find the Jeffreys prior we need the second derivative of $\ln L$,

$$
\frac{\partial^{2} \ln L}{\partial \theta^{2}}=-\frac{n}{\theta^{2}}-\frac{N-n}{(1-\theta)^{2}}
$$

The expected Fisher information is therefore

$$
I(\theta)=-E\left[\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right]=\frac{N \theta}{\theta^{2}}+\frac{N(1-\theta)}{(1-\theta)^{2}}=\frac{N}{\theta}+\frac{N}{1-\theta}=\frac{N}{\theta(1-\theta)}
$$

The Jeffreys prior is therefore

$$
\pi(\theta) \propto \frac{1}{\sqrt{\theta(1-\theta)}}
$$

Using this in Bayes theorem to find the posterior pdf gives

$$
p(\theta \mid n) \propto L(n \mid \theta) \pi(\theta) \propto \frac{\theta^{n}(1-\theta)^{N-n}}{\sqrt{\theta(1-\theta)}}=\theta^{n-1 / 2}(1-\theta)^{N-n-1 / 2}
$$

$\mathbf{1 (e)}$ To find a Bayesian upper limit on θ one simply integrates the posterior pdf so that a specified probability $1-\alpha$ is contained below $\theta_{\text {up }}$, i.e.,

$$
1-\alpha=\int_{0}^{\theta_{\mathrm{up}}} p(\theta \mid n) d \theta
$$

solving for $\theta_{\text {up }}$ gives the upper limit.
A frequentist upper limit as found in (c) is a function of the data designed to be greater than the true value of the parameter with a fixed probability (the confidence level) regardless of the parameter's actual value. A Bayesian interval can be regarded as reflecting a range for the parameter where it is believed to lie with a fixed probability (the credibility level). Note that with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the interval, but rather take it to have a certain probability to cover the true θ (which in general will depend on θ).

Simplified "Errors on Errors" Model

The model in Lectures 11-3, 11-4
Details in: G. Cowan, Statistical Models with Uncertain Error Parameters, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778 makes a distinction between the $\sigma_{y, i}$ (\sim statistical errors), which are known, and the $\sigma_{u, i} \sim$ systematic errors), which are treated as adjustable parameters.

Here we show a simplified model that does not distinguish between statistical and systematic errors.

Curve fitting, averages

Suppose independent $y_{i} \sim$ Gauss, $i=1, \ldots, N$, with

$$
\begin{aligned}
& E\left[y_{i}\right]=\varphi\left(x_{i} ; \boldsymbol{\mu}\right) \\
& V\left[y_{i}\right]=\sigma_{i}^{2}
\end{aligned}
$$

$\boldsymbol{\mu}$ are the parameters in the fit function $\varphi(x ; \boldsymbol{\mu})$.
If we take the σ_{i} as known, we have the usual log-likelihood

$$
\ln L(\boldsymbol{\mu})=-\frac{1}{2} \sum_{i=1}^{N} \frac{\left(y_{i}-\varphi\left(x_{i} ; \boldsymbol{\mu}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

which leads to the Least Squares estimators for $\boldsymbol{\mu}$.

Model with uncertain σ_{i}^{2}

If the $\sigma_{i}{ }^{2}$ are uncertain, we can take them as adjustable parameters.

The estimated variances $v_{i}=s_{i}^{2}$ are modeled as gamma distributed.

The likelihood becomes

$$
L\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\left(y_{i}-\varphi\left(x_{i} ; \boldsymbol{\mu}\right)\right)^{2} / 2 \sigma_{i}^{2}} \frac{\beta_{i}^{\alpha_{i}}}{\Gamma\left(\alpha_{i}\right)} v_{i}^{\alpha_{i}-1} e^{-\beta_{i} v_{i}}
$$

Want $\quad E\left[v_{i}\right]=\sigma_{i}^{2} \quad \frac{\sigma_{s_{i}}}{E\left[s_{i}\right]} \approx r_{i} \quad\left(s_{i}=\sqrt{ } v_{i}\right)$

$$
\rightarrow \quad \alpha_{i}=\frac{1}{4 r_{i}^{2}} \quad \beta_{i}=\frac{\alpha_{i}}{\sigma_{i}^{2}}
$$

Profile log-likelihood

One can profile over the $\sigma_{i}{ }^{2}$ in close form.
The log-profile-likelihood is
$\ln L^{\prime}(\boldsymbol{\mu})=\ln L\left(\boldsymbol{\mu}, \widehat{\boldsymbol{\sigma}^{2}}\right)=-\frac{1}{2} \sum_{i=1}^{N}\left(1+\frac{1}{2 r_{i}^{2}}\right) \ln \left[1+2 r_{i}^{2} \frac{\left(y_{i}-\varphi\left(x_{i} ; \boldsymbol{\mu}\right)\right)^{2}}{v_{i}}\right]$
Quadratic terms replace by sum of logs.
Equivalent to replacing Gauss pdf for y_{i} by Student's $t, v_{\text {dof }}=1 / 2 r_{i}^{2}$
Confidence interval for $\boldsymbol{\mu}$ becomes sensitive to goodness-of-fit (increases if data internally inconsistent).

Fitted curve less sensitive to outliers.
Simple program for Student's t average: stave.py

