G. Cowan / RHUL Physics PH4515 Problem Sheet 8

1a) [6 marks] Running the program mlFit.py produces the following plots:

A fit of the pdf:

A scan of -InL versus theta:

1b) [6 marks]

$$1 \ b) \quad \bigvee_{ij}^{i} = -\int \frac{\partial^{2} \ln P(\hat{x} | \hat{e})}{\partial \theta_{i} \partial \theta_{j}} P(\hat{x} | \hat{e}) d\hat{x}$$

$$U_{x} \quad P(\hat{x} | \hat{\theta}) = \prod f(x_{i}; \hat{\theta}) \quad i.i.d. sample$$

$$i=1$$

$$V_{ij}^{i} = -\int \frac{\partial^{2} \ln f(x_{i}; \hat{\theta})}{\partial \theta_{i} \partial \theta_{j}} \prod f(x_{i}; \hat{\theta}) dx_{k}$$

$$= -\sum_{i}^{i} \int \frac{\partial^{2} \ln f(x_{i}; \hat{\theta})}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx_{k} \cdot \prod \int f(x_{i}; \hat{\theta}) dx_{k}$$

$$= -n \int \frac{\partial^{2} \ln f(x_{i}; \hat{\theta})}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

$$= -n \int \frac{\partial^{2} \ln f(x_{i}; \hat{\theta})}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

$$\int \frac{\partial e_{i}}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

$$= -n \int \frac{\partial^{2} \ln f(x_{i}; \hat{\theta})}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

$$\int \frac{\partial e_{i}}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

$$\int \frac{\partial e_{i}}{\partial \theta_{i} \partial \theta_{j}} f(x_{i}; \hat{\theta}) dx$$

1(c) [6 marks] Running mlFit.py with different numbers of events	gave:
--	-------

numVal	thetaHat	sigma_thetaHat
100	0.197218	0.071219
200	0.204551	0.052736
400	0.160808	0.036985
800	0.198224	0.026129

A plot of sigma_thetaHat versus numVal is shown below. The standard deviation of the estimator is seen to decrease as $1/\sqrt{n}$, as expected.

1(d) [6 marks] The results of the fit with different combinations of parameters adjustable are:

Free	Fixed	sigma_thetaHat
theta	mu, sigma, xi	0.044535
theta, xi theta, xi, sigma	mu, sigma mu	0.052736 0.064456
theta, xi, sigma, mu		0.085786

As can be seen, the standard deviation of the estimator of theta increases when it is fitted simultaneously with an increasing number of other adjustable parameters.

Discussion Session Problem 1: The binomial distribution is given by

$$P(n; N, \theta) = \frac{N!}{n!(N-n)!} \theta^n (1-\theta)^{N-n} ,$$

where n is the number of 'successes' in N independent trials, with a success probability of θ for each trial. Recall that the expectation value and variance of n are $E[n] = N\theta$ and $V[n] = N\theta(1-\theta)$, respectively. Suppose we have a single observation of n and using this we want to estimate the parameter θ .

1(a) Find the maximum likelihood estimator $\hat{\theta}$.

1(b) Show that $\hat{\theta}$ has zero bias and find its variance.

1(c) Suppose we observe n = 0 for N = 10 trials. Find the upper limit for θ at a confidence level of CL = 95% and evaluate numerically.

1(d) Suppose we treat the problem with the Bayesian approach using the Jeffreys prior, $\pi(\theta) \propto \sqrt{I(\theta)}$, where

$$I(\theta) = -E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]$$

is the expected Fisher information. Find the Jeffreys prior $\pi(\theta)$ and the posterior pdf $p(\theta|n)$ as proportionalities.

1(e) Explain how in the Bayesian approach how one would determine an upper limit on θ using the result from (d). (You do not actually have to calculate the upper limit.)

Explain briefly the differences in the interpretation between frequentist and Bayesian upper limits.

Solution:

1(a) The likelihood function is given by the binomial distribution evaluated with the single observed value n and regarded as a function of the unknown parameter θ :

$$L(\theta) = \frac{N!}{n!(N-n)!} \theta^n (1-\theta)^{N-n}$$

The log-likelihood function is therefore

$$\ln L(\theta) = n \ln \theta + (N - n) \ln(1 - \theta) + C ,$$

where C represents terms not depending on θ . Setting the derivative of $\ln L$ equal to zero,

$$\frac{\partial \ln L}{\partial \theta} = \frac{n}{\theta} - \frac{N-n}{1-\theta} = 0 ,$$

we find the ML estimator to be

 $\hat{\theta} = \frac{n}{N} \; .$

1(b) We are given the expectation and variance of a binomial distributed variable as $E[n] = N\theta$ and $V[n] = N\theta(1-\theta)$. Using these results we find the expectation value of $\hat{\theta}$ to be

$$E[\hat{\theta}] = E\left[\frac{n}{N}\right] = \frac{E[n]}{N} = \frac{N\theta}{N} = \theta$$
,

and therefore the bias is $b = E[\hat{\theta}] - \theta = 0$. Similarly we find the variance to be

$$V[\hat{\theta}] = V\left[\frac{n}{N}\right] = \frac{1}{N^2}V[n] = \frac{N\theta(1-\theta)}{N^2} = \frac{\theta(1-\theta)}{N} .$$

1(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on θ at a confidence level of $CL = 1 - \alpha$ is the value of θ for which there is a probability α to find as few events as we found or fewer, i.e.,

$$\alpha = P(n \le 0; N, \theta) = \frac{N!}{0!(N-0)!} \theta^0 (1-\theta)^{N-0}$$

Solving for θ gives the 95% CL upper limit

$$\theta_{\rm up} = 1 - \alpha^{1/N} = 1 - 0.05^{1/10} = 0.26$$

1(d) To find the Jeffreys prior we need the second derivative of $\ln L$,

$$\frac{\partial^2 \ln L}{\partial \theta^2} = -\frac{n}{\theta^2} - \frac{N-n}{(1-\theta)^2} \; .$$

The expected Fisher information is therefore

$$I(\theta) = -E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right] = \frac{N\theta}{\theta^2} + \frac{N(1-\theta)}{(1-\theta)^2} = \frac{N}{\theta} + \frac{N}{1-\theta} = \frac{N}{\theta(1-\theta)}.$$

The Jeffreys prior is therefore

$$\pi(\theta) \propto \frac{1}{\sqrt{\theta(1-\theta)}}$$

Using this in Bayes theorem to find the posterior pdf gives

$$p(\theta|n) \propto L(n|\theta)\pi(\theta) \propto \frac{\theta^n (1-\theta)^{N-n}}{\sqrt{\theta(1-\theta)}} = \theta^{n-1/2} (1-\theta)^{N-n-1/2}$$

1(e) To find a Bayesian upper limit on θ one simply integrates the posterior pdf so that a specified probability $1 - \alpha$ is contained below θ_{up} , i.e.,

$$1 - \alpha = \int_0^{\theta_{\rm up}} p(\theta|n) \, d\theta \; ,$$

solving for θ_{up} gives the upper limit.

A frequentist upper limit as found in (c) is a function of the data designed to be greater than the true value of the parameter with a fixed probability (the confidence level) regardless of the parameter's actual value. A Bayesian interval can be regarded as reflecting a range for the parameter where it is believed to lie with a fixed probability (the credibility level). Note that with the Jeffreys prior, one may not necessary use the degree of belief interpretation of the interval, but rather take it to have a certain probability to cover the true θ (which in general will depend on θ).

Simplified "Errors on Errors" Model

The model in Lectures 11-3, 11-4

Details in: G. Cowan, *Statistical Models with Uncertain Error Parameters*, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778

makes a distinction between the $\sigma_{y,i}$ (~statistical errors), which are known, and the $\sigma_{u,i}$ ~systematic errors), which are treated as adjustable parameters.

Here we show a simplified model that does not distinguish between statistical and systematic errors.

 μ are the parameters in the fit function $\varphi(x;\mu)$.

If we take the σ_i as known, we have the usual log-likelihood

$$\ln L(\boldsymbol{\mu}) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \varphi(x_i; \boldsymbol{\mu}))^2}{\sigma_i^2}$$

which leads to the Least Squares estimators for μ .

Model with uncertain σ_i^2

If the σ_i^2 are uncertain, we can take them as adjustable parameters.

The estimated variances $v_i = s_i^2$ are modeled as gamma distributed.

The likelihood becomes

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} e^{-(y_{i} - \varphi(x_{i};\boldsymbol{\mu}))^{2}/2\sigma_{i}^{2}} \frac{\beta_{i}^{\alpha_{i}}}{\Gamma(\alpha_{i})} v_{i}^{\alpha_{i}-1} e^{-\beta_{i}v_{i}}$$

$$Want \qquad E[v_{i}] = \sigma_{i}^{2} \qquad \frac{\sigma_{s_{i}}}{E[s_{i}]} \approx r_{i} \qquad (s_{i} = \sqrt{v_{i}})$$

$$\rightarrow \qquad \alpha_{i} = \frac{1}{4r_{i}^{2}} \qquad \beta_{i} = \frac{\alpha_{i}}{\sigma_{i}^{2}}$$

G. Cowan / RHUL Physics

Statistical Data Analysis / lecture week 11

Profile log-likelihood

One can profile over the σ_i^2 in close form.

The log-profile-likelihood is

$$\ln L'(\boldsymbol{\mu}) = \ln L(\boldsymbol{\mu}, \widehat{\boldsymbol{\sigma}^2}) = -\frac{1}{2} \sum_{i=1}^N \left(1 + \frac{1}{2r_i^2}\right) \ln \left[1 + 2r_i^2 \frac{(y_i - \varphi(x_i; \boldsymbol{\mu}))^2}{v_i}\right]$$

Quadratic terms replace by sum of logs.

Equivalent to replacing Gauss pdf for y_i by Student's t, $v_{dof} = 1/2r_i^2$

Confidence interval for μ becomes sensitive to goodness-of-fit (increases if data internally inconsistent).

Fitted curve less sensitive to outliers.

Simple program for Student's *t* average: stave.py