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1a) [6 marks]   Running the program mlFit.py produces the following plots: 
 
A fit of the pdf: 

 
 

A scan of -lnL versus theta: 
  

 
 
A contour of lnL = lnLmax – ½: 
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1b)  [6 marks]   
 

 
  



1(c) [6 marks]  Running mlFit.py with different numbers of events gave: 
 

numVal  thetaHat   sigma_thetaHat 
 ----------------------------------------------------------------------- 
 100    0.197218   0.071219 
 200    0.204551   0.052736 
 400     0.160808   0.036985 
 800     0.198224   0.026129 
 
A plot of sigma_thetaHat versus numVal is shown below.  The standard deviation of the 
estimator is seen to decrease as 1/√n, as expected. 

 
 

1(d) [6 marks]  The results of the fit with different combinations of parameters adjustable 
are: 
 
Free    Fixed    sigma_thetaHat 
------------------------------------------------------------------------------------ 
theta    mu, sigma, xi  0.044535 
theta, xi   mu, sigma   0.052736 
theta, xi, sigma  mu    0.064456 
theta, xi, sigma, mu --    0.085786 
  
As can be seen, the standard deviation of the estimator of theta increases when it is fitted 
simultaneously with an increasing number of other adjustable parameters. 



Discussion Session Problem 1: The binomial distribution is given by

P (n;N, θ) =
N !

n!(N − n)!
θn(1− θ)N−n ,

where n is the number of ‘successes’ in N independent trials, with a success probability of
θ for each trial. Recall that the expectation value and variance of n are E[n] = Nθ and
V [n] = Nθ(1− θ), respectively. Suppose we have a single observation of n and using this we
want to estimate the parameter θ.

1(a) Find the maximum likelihood estimator θ̂.

1(b) Show that θ̂ has zero bias and find its variance.

1(c) Suppose we observe n = 0 for N = 10 trials. Find the upper limit for θ at a confidence
level of CL = 95% and evaluate numerically.

1(d) Suppose we treat the problem with the Bayesian approach using the Jeffreys prior,
π(θ) ∝

√
I(θ), where

I(θ) = −E
[
∂2 lnL

∂θ2

]

is the expected Fisher information. Find the Jeffreys prior π(θ) and the posterior pdf p(θ|n)
as proportionalities.

1(e) Explain how in the Bayesian approach how one would determine an upper limit on θ
using the result from (d). (You do not actually have to calculate the upper limit.)

Explain briefly the differences in the interpretation between frequentist and Bayesian upper
limits.

Solution:

1(a) The likelihood function is given by the binomial distribution evaluated with the single
observed value n and regarded as a function of the unknown parameter θ:

L(θ) =
N !

n!(N − n)!
θn(1− θ)N−n .

The log-likelihood function is therefore

lnL(θ) = n ln θ + (N − n) ln(1− θ) + C ,

where C represents terms not depending on θ. Setting the derivative of lnL equal to zero,

∂ lnL

∂θ
=
n

θ
− N − n

1− θ
= 0 ,

we find the ML estimator to be

θ̂ =
n

N
.
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1(b) We are given the expectation and variance of a binomial distributed variable as E[n] =
Nθ and V [n] = Nθ(1− θ). Using these results we find the expectation value of θ̂ to be

E[θ̂] = E

[
n

N

]
=
E[n]

N
=
Nθ

N
= θ ,

and therefore the bias is b = E[θ̂]− θ = 0. Similarly we find the variance to be

V [θ̂] = V

[
n

N

]
=

1

N2
V [n] =

Nθ(1− θ)
N2

=
θ(1− θ)
N

.

1(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on θ at a confidence level
of CL = 1− α is the value of θ for which there is a probability α to find as few events as we
found or fewer, i.e.,

α = P (n ≤ 0;N, θ) =
N !

0!(N − 0)!
θ0(1− θ)N−0 .

Solving for θ gives the 95% CL upper limit

θup = 1− α1/N = 1− 0.051/10 = 0.26 .

1(d) To find the Jeffreys prior we need the second derivative of lnL,

∂2 lnL

∂θ2
= − n

θ2
− N − n

(1− θ)2
.

The expected Fisher information is therefore

I(θ) = −E
[
∂2 lnL

∂θ2

]
=
Nθ

θ2
+
N(1− θ)
(1− θ)2

=
N

θ
+

N

1− θ
=

N

θ(1− θ)
.

The Jeffreys prior is therefore

π(θ) ∝ 1√
θ(1− θ)

.

Using this in Bayes theorem to find the posterior pdf gives

p(θ|n) ∝ L(n|θ)π(θ) ∝ θn(1− θ)N−n√
θ(1− θ)

= θn−1/2(1− θ)N−n−1/2 .

1(e) To find a Bayesian upper limit on θ one simply integrates the posterior pdf so that a
specified probability 1− α is contained below θup, i.e.,

1− α =

∫ θup

0
p(θ|n) dθ ,

solving for θup gives the upper limit.

A frequentist upper limit as found in (c) is a function of the data designed to be greater than
the true value of the parameter with a fixed probability (the confidence level) regardless of
the parameter’s actual value. A Bayesian interval can be regarded as reflecting a range for
the parameter where it is believed to lie with a fixed probability (the credibility level). Note
that with the Jeffreys prior, one may not necessary use the degree of belief interpretation of
the interval, but rather take it to have a certain probability to cover the true θ (which in
general will depend on θ).
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1G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 11

Simplified “Errors on Errors” Model

The model in Lectures 11-3, 11-4

Details in:  G. Cowan, Statistical Models with Uncertain Error
Parameters, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778

makes a distinction between the σy,i (~statistical errors), which 
are known, and the σu,i ~systematic errors), which are treated 
as adjustable parameters.

Here we show a simplified model that does not distinguish 
between statistical and systematic errors.  
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Curve fitting, averages
Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ are the parameters in the fit function φ(x;μ).

If we take the σi as known, we have the usual log-likelihood

which leads to the Least Squares estimators for μ.
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Model with uncertain σi
2

If the σi2 are uncertain, we can take them
as adjustable parameters.

The estimated variances vi = si2 are 
modeled as gamma distributed.

The likelihood becomes

(si = √vi)Want

→
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Profile log-likelihood
One can profile over the σi2 in close form.  

The log-profile-likelihood is

Quadratic terms replace by sum of logs.

Equivalent to replacing Gauss pdf for yi by Student’s t, νdof = 1/2ri2

Confidence interval for μ becomes sensitive to goodness-of-fit
(increases if data internally inconsistent).

Fitted curve less sensitive to outliers.

Simple program for Student’s t average:  stave.py


