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Statistical Data Analysis
Lecture 9-1

e |east squares with histogram data
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LS with histogram data

The fit function in an LS fit is not a pdf, but it could be proportional
to one, e.g., when we fit the “envelope” of a histogram.

Suppose for example, we have an i.i.d. data sample of n values
Xi,..., X, Sampled from a pdf f(x;#). Goal is to estimate 6.

Instead of using all n values, put them in a histogram with N bins,
i.e., ¥, = number of entries in bini: y= (y,..., Yn)-

The model predicts mean values: 0.
Elyi] = 11:(6) i

‘540-

=n f(x;0)dx 530'

bin i 5 20

~nf(x;;0)Ax 10-

0

bin centre / \ bin width 0 4 8 ) 12 16
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LS with histogram data (2)

The usual models:

for fixed sample size n, take y ~ multinomial,
if n not fixed, y; ~ Poisson(u;)

Suppose that the expected number of entries in each i, are all > 1
and probability to be in any individual bin p; << 1, one can show

— ¥, indep. and ~ Gauss with g, = \/,ui. (— o; depends on 6).

The (log-) likelihood functions are then

—(yi—i(0))*/207(6)

H \/%0'7,

N o 2 N
InL(0) = —%; (i Oi(lz)(f)) — ;1n0¢(9)+0
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LS with histogram data (3)

Still define the least-squares estimators to minimize

N
i (Ui — 1i(0))?
X~ (0) = ; 5:(0)2

No longer equivalent to maximum likelihood (equal for u; > 1 ).

Two possibilities for o;:
o, = \u,(0) (LS method)
o, =y, (Modified LS method)

Modified LS can be easier computationally but not defined if
any y,=0.

For either method, 2., ~ chi-square pdf for u; > 1, but this
breaks down for when the y; are not large.
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LS with histogram data — normalization

Do not “fit” the normalization, i.e., n — free parameter v:

ui(60,v) =v f(z;0) dx

bin 2
If you do this, one finds the LS estimator for v is not n, but rather

sznin
2

Urs =n +
A . 2

Software may include adjustable normalization parameter as
default; better to use known .
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N(x)

LS normalization example

Example with n = 400 entries, N = 20 bins:

[ —— data (400 entries)
-—- LS: ¥*=17.3, v = 400 (fixed)

ML: 2 =17.6,v=400.0+20.0

60

(@)

- —— data (400 entries)

LS: ¥*=17.1,v=4085+20.2

MLS: ¥*=17.8,v=3822+195

N(x)

Expect X?nin around N — m,

60

(b)

— relative error in © large when /N large, n small

Either get n directly from data for LS (or better, use ML).
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Statistical Data Analysis
Lecture 9-2

e Goodness-of-fit from the likelihood ratio
o Wilks’ theorem

e MLE and goodness-of-fit all in one
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Goodness of fit from the likelihood ratio

Suppose we model data using a likelihood L(u) that depends on N
parameters u = (uy,..., ity). Define the statistic

L(p)
L(f)

where g is the ML estimator for u. Value of t, reflects agreement
between hypothesized u and the data.

A .
Good agreement means u = u, so ¢, is small;

Larger ¢, means less compatibility between data and u.

oo
Quantify “goodness of fit” with p-value: p,, = / f(tulp)dt,

tp. ,obs

need this pdf

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9



Likelihood ratio (2)

Now suppose the parameters u = (uy,..., tty) can be determined by
another set of parameters 8 = (0,,..., 0,,), with M <N.

Want to test hypothesis that the true model is somewhere in the
subspace u = u(0) versus the alternative of the full parameter space

u. Generalize the LR test statistic to be

o fit M parameters

)

by = (
g L(f)
N fit N parameters

To get p-value, need pdf f(z,|u(0)).
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Wilks” Theorem

Wilks” Theorem: if the hypothesized w,(0), i = 1,...,N, are true for
some choice of the parameters 8 = (0,...., 0,,), then in the large

sample limit (and provided regularity conditions are satisfied)

/ MLE Of (61,..., QM)

— _91n L((0)) follows a chi-square distribution for
L(ft N — M degrees of freedom.

MLE Of (/ll,..., lLlN)

The regularity conditions include: the model in the numerator of
the likelihood ratio is “nested” within the one in the denominator,
i.e., u(0) is a special case of u = (uy,..., 1y).

Proof boils down to having all estimators ~ Gaussian.

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.
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Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:

yi ~ Gauss(pi, 0i) , i=1,...,N

/N

N measurements and N parameters ( = “saturated model”)

want to estimate known

1
V2TOo;

o—(vi—pi)? /207

N
Likelihood: L(p)=1]
i=1

1 N (i — pi)?
Log-likelihood: InL(u) = —5 Z y 02# ) +C
i=1 ‘

1

ML estimators:  fi; = y; t1=1,...,N
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Likelihood ratio for Gaussian data

Now suppose u = u(#), e.g., in an LS fit with u(0) = u(x; 0).

The goodness-of-fit statistic for the test of the hypothesis
u(@) becomes

L(p(9)) gj (yi — 11(6))?

2
9 ~ XN—-M

L) & o
N /

chi-square pdf for N-M
degrees of freedom

Here ¢, is the same as y?;, from an LS fit.

So Wilks” theorem formally states the property that we claimed
for the minimized chi-squared from an LS fit with N
measurements and M fitted parameters.
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Likelihood ratio for Poisson data

Suppose the data are a set of values n = (n,,..., ny), e.g., the
numbers of events in a histogram with N bins.

Assume n; ~ Poisson(v)), i = 1,..., N, all independent.

First (for LR denominator) treat v = (vy,..., vy) as all adjustable:

N Vni
Likelihood: L(y) = H i'e_ui
i=1
N
Log-likelihood: InL(v) = Z mimy; —y;| +C
=1
ML estimators: vy =mn; , 1=1,...,N
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Goodness of fit with Poisson data (2)

For LR numerator find v(0) with M fitted parameters 8 = (0,,..., 0,)):

A

L) | w6
t, = —21In L(D) ——2; n; In .

— 1;(0) + 1

Wilks” theorem: in large-sample limit ¢, ~ X%V—M

Exact in large sample limit; in practice good approximation for
surprisingly small n; (~several).

As before use ¢, to get p-value of v(0),
/ independent of @

po= | FtI06) dty =1~ Flty i N = M)
t

v ,0bs
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Goodness of fit with multinomial data

Similar if data n = (ny,..., ny) follow multinomial distribution:

Ntot!

nl!nQ! e

P(n|p,niot) = nN!pT1p32 DAY

N
E.g. histogram with N bins but fix:  ntot = Z N;
i=1

N
o Vi
Log-likelihood:  InL(v) =) njln— +C (Vi = pintot)
ML estimators:  ; = n; (Only N—1 independent; one

is n,., minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

Wilks: in large sample limit ¢, ~ X%V—M—l

One less degree of freedom than in Poisson case because
effectively only N—1 parameters fitted in denominator of LR.
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Estimators and g.o.f. all at once

Evaluate numerators with @ (not its estimator); if any n; =0,
omit the corresponding log terms:

xp(0) = —QZ[nzan’(g)

—v;(0) +n; (Poisson)

Vz(g)

)(12\/1(‘9 = —Qan In (Multinomial)

These are equal to the corresponding —2 In L(#) plus terms not
depending on 8, so minimizing them gives the usual ML

estimators for 6.

The minimized value gives the statistic 7,, so we get
goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and
likelihood functions in fits to histograms, NIM 221 (1984) 437.
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Examples of ML/LS fits

Unbinned maximum likelihood (mlFit.py, minimize neglogl)

In L(0) = zn:lnf(xi;H
i=1

0.16 - 0 =0.2046+0.0527

0.00, leHHHLﬂHLHﬂﬂIHJHHlHHHLU[H[HLHUJHLUJHI[II[UJJILLJJIIIIIIIIIIII L

10.0 125 150 17.5 20.0
X
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Examples of ML/LS fits

Least Squares fit (histFit.py, minimize chi2lLS)

9 (yi — Mz‘(9>)2
X“(0) =
; 11;(0)
20.0 Least S 2
17.5_|\ Aeas quares X min — 32.7
6=0.1449+0.0484 M= 38
) dof
§15.01 =0.71
€ 12.5—\ o
3 10.0- Many bins with few
% 7.5 entries, LS not
5.0 expected to be
2.5 - reliable.
0.0
: 20
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Examples of ML/LS fits

Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

= — ;11
XM - ! n;
1=1
. o 2 _
501 I\A/IaX|mum Likelihood X min = 353
6=0.2015+0.0530 -
. ndof 37
T 15- p — 055
(-
()
s
© 107 Essentially same result
% as unbinned ML.
5_
= M i
O : ! 1 11
0 4 8 12 16 20
X
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Statistical Data Analysis
Lecture 9-3

e |nterval estimation
e Confidence interval from inverting a test

e Example: limits on mean of Gaussian
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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 8 (do this for all 6):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region|0) < a
for a prespecified a, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now invert the test to define a confidence interval as:

set of 6 values that are not rejected in a test of size a
(confidence level CLis 1—a).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,.

If pp < a, then we reject 6.

The confidence interval at CL = 1 — a consists of those values of
6 that are not rejected.

E.g. an upper limit on @ is the greatest value for which p, > a.
In practice find by setting p, = a and solve for 6.

For a multidimensional parameter space 8 = (0,,... 8,,) use same
idea — result is a confidence “region” with boundary determined

by py = a.
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Coverage probability of confidence interval

If the true value of @ is rejected, then it’s not in the confidence
interval. The probability for this is by construction (equality for

continuous data):
P(reject 8|60) < o = type-| error rate

Therefore, the probability for the interval to contain or “cover” @ is
P(conf. interval “covers” 8|0) > 1 - a

This assumes that the set of 8 values considered includes the true
value, i.e., it assumes the composite hypothesis P(x|H.,0).
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Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to
maximize the power with respect to the relevant alternative(s).

Example: x ~Gauss(u, o)  (take o known)

Test Hy : i = uy versus the alternative Hy : 1 < uy

, W
— Put w, at region of x-space »
characteristic of low u (i.e. at low x) ;
A, /Mo i

Equivalently, take the p-value to be

Lobs 1 B
Puo = P < apslp) = e e
—00 2o o
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Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all u, i.e., set p,, = a and
solve for u, to find the interval’s boundary

Pa,
L /‘L

Mo — Hup = Lobs — O-(I)_I(OZ) = Zobs T O'(I)_l(l _ Oé)
This is an upper limit on 4, i.e., higher i have even lower p-value

and are in even worse agreement with the data.

Usually use @ !(a) = —®~!(1—a) so as to express the upper limit as
X, PIUS @ positive quantity. E.g. for o = 0.05, ®-1(1-0.05) = 1.64.
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Upper limit on Gaussian mean (3)

Uy = the hypothetical value of u such that there is only a
probability a to find x < x .

%025

0<$ 0.05

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9
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1- vs. 2-sided intervals
Now test: H, : u = u, versus the alternative H, : u # u,

|.e. we consider the
alternative to u, to include
higher and lower values,
so take critical region on
both sides:

Result is a “central” confidence interval [14,, t,):

_ el @
Hlo = Tobs — 0P (1 2) E.g. for a = 0.05
o1 (1-2) =1.96~ 2
Mup:xobs+0q’_1 (1_%> ( 2>

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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On the meaning of a confidence interval

Often we report the confidence interval [a,b] together with the
point estimate as an “asymmetric error bar”, e.g.,

é-l'ﬂ '. '- —
- C /] (> 7\/\
a.:—B'CI
A + 0.%1

E.g. (atCL =1-0=68.3%): O — 30.%% _ 0.2

Does this mean P(80.00 < < 80.56) =68.3%? No, not for a
frequentist confidence interval. The parameter 6 does not fluctuate

upon repetition of the measurement; the endpoints of the interval

do, i.e., the endpoints of the interval fluctuate (they are functions of

data):
) Plato L @l b)) = -«
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Statistical Data Analysis
Lecture 9-4

e Confidence intervals from the likelihood function
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Approximate confidence intervals/regions
from the likelihood function

Suppose we test parameter value(s) 8 = (0, ..., 6,) using the ratio

A(B):L‘?) 0<A0)<1
L(6)
Lower A(#) means worse agreement between data and
hypothesized 6. Equivalently, usually define

tg = —21n )\(9)

so higher ¢, means worse agreement between @ and the data.

oo
p-value of @ therefore Po = / f(tg|@) dte
t oDs
o ™ need pdf

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9 32



Confidence region from Wilks’” theorem

Wilks’ theorem says (in large-sample limit and provided
certain conditions hold...)

chi-square dist. with # d.o.f. =
# of componentsin@=(6,, ..., 0,).

ll, n

f(tol6) ~ xz

Assuming this holds, the p-value is

pe =1—F2(tg) <« setequaltoa

To find boundary of confidence region set p,= o and solve for ¢,:

to=Fg (1— )

Recall also tp = —21In L(HA)
L(#)
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Confidence region from Wilks’ theorem (cont.)

i.e., boundary of confidence region in @ space is where
InL(6) =InL(6) — $F,' (1 - )
For example, for 1 —a = 68.3% and n = 1 parameter,

F10.683) =1
X1

and so the 68.3% confidence level interval is determined by

1
2
Same as recipe for finding the estimator’s standard deviation, i.e.,

InL() = InL(f) —

[é — 04, 0+ 05) is a68.3% CL confidence interval.
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Example of interval from In L(6)

For n=1 parameter, CL=0.683, 0, = 1.

= T T T T
~ = " " - N
T-AT T T+ AT :
2 4t - S | Our exponential
: : example, now with
only n =5 events.
Can report ML estimate
45 L 1 with approx. confidence
interval fromIn L, — 1/2
as “asymmetric error bar”:
5 7 = 0.851052
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Multiparameter case

For increasing number of parameters, CL= 1 — a decreases for
confidence region determined by a given

1l —«
Qa n = n=2 n=J3 n= n=>a
1.0 | 0.683  0.393  0.199 0.090 0.037
2.0 | 0.843 0.632 0428 0.264 0.151
4.0 | 0.954 0865 0.739 0.594 0.451
9.0 | 0.997  0.9890 0971 0.939 0.891

G. Cowan / RHUL Physics
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Multiparameter case (cont.)

Equivalently, O, increases with n fora givenCL=1 — a.

, Oa

l—a n=1 n=2 n=3 n=4 n=>5H
0.683 | 1.00 2.30 3.93 4.72 2.89
0.90 2.71 4.61 6.25 7.78 9.24
0.95 3.84 2.99 7.82 9.49 11.1
0.99 6.63 9.21 11.3 13.3 15.1
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Example: 2 parameter fit:

Example from problem sheet 8, i.i.d. sample of size 200

e~ (@=1)?/20% (1 — g) /¢

x~ f(2;0,6) =0

| =

\/%

0.16 0 =0.2046+0.0527

0.14 - £=5.1079+0.6446

0.12- Here fit two

6 and ¢.

0.06 -

0.04 -

0.02 1

0.00, lIlIlHﬂlIJIHﬂIIIHJLIHlﬂHHLlllHlHLHUJHLHJHHIIHUJHJJJIIIIIIIIIII LI

100 125 150 175 20.0
X
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Example: 2 parameter fit:

In iminuit, user can set nsigma = O,

6.5 1

6.0 1

5.5

Xi

5.0 1

4.5 -

4.0

G. Cowan / RHUL Physics

0.15

0.20 0.25 0.30
theta
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nsigma=1
0,=1
CL=0.393
nsigma=2
Q,=4
CL=0.865
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LS example: refraction data from Ptolemy

Astronomer Claudius Ptolemy obtained data on refraction of

light by water in around 140 A.D.:
Angles of incidence and

refraction (degrees)
9i 9r

10 8
air fﬂ 20 151
30 221

water j 40 29
A 50 35

0; incident ray

copper disc 60 40%
refractedray / © 70 45%
' 80 50

Suppose the angle of incidence is set with negligible error, and
the measured angle of refraction has a standard deviation of %"

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

41



Laws of refraction

A commonly used law of refraction was
0, = ab; |
although it is reported that Ptolemy preferred
0. = ab; — BH? .

The law of refraction discovered by Ibn Sahl in 984 (and
rediscovered by Snell in 1621) is

Or = sin ! (Sin gi)
., .

where r = n/n; is the ratio of indices of refraction of the two media.
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LS fit: 6. = a0,

60
data
504 — 6, = ab; '
X2/Ngos = 134.6/7
—~ 40 - _
2401 p=6.7%x102
&) ]
o 30 '
S
S 20 '
10 - .
0 . . . .
0 20 40 60 80

6; (degrees)
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LS fit: 6. = a6, — 0.

2

60
data
50{ =—— 6, =ab; — BO?
X?/ngor = 0.0/6
’g 40 p=10
g
2 30
S
o 20
10 -
O T T T T
0 20 40 60 80

6; (degrees)
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LS fit: Snell’s Law

60
data
501 —— 6, =sin"1[(sind;)/r] '
X2/Ngof = 14.0/7
2491 ,-0051
g
< 30
o
D 20 -
10 -
0 T T T T
0 20 40 60 80

6, (degrees)

Fitted index of refraction of water »=1.3116 == 0.0056 found not
quite compatible with currently known value 1.330.
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