Discussion session notes week 11 (13 Dec 2021)

G. Cowan / RHUL Physics
PH4515 Problem Sheet 8

1a) |5 marks] Running the program mlFit.py produces the following plots:

A fit of the pdf:

A scan of -InL versus theta:

theta = 0.205 - 0.0527 + 0.0527
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1(c) [ marks] Running mlFit.py with different numbers of events gave:

numVal thetaHat sigma_thetaHat
100 0.197218 0.071219
200 0.204551 0.052736
400 0.160808 0.036985
800 0.198224 0.026129

A plot of sigma_thetaHat versus numVal is shown below. The standard deviation of the
estimator is seen to decrease as 1/\/n, as expected.
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1(d) [5 marks] The results of the fit with different combinations of parameters adjustable

are:
Free Fixed sigma_thetaHat
theta mu, sigma, Xi 0.044535
theta, xi mu, sigma 0.052736
theta, xi, sigma mu 0.064456
theta, xi, sigma, mu - 0.085786

As can be seen, the standard deviation of the estimator of theta increases when it is fitted
simultaneously with an increasing number of other adjustable parameters.
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Discussion Session Problem 1: The binomial distribution is given by

N!

P(n;N,G):m

9”(1 . Q)N—n ’

where n is the number of ‘successes’ in N independent trials, with a success probability of
0 for each trial. Recall that the expectation value and variance of n are E[n| = N6 and
V[n] = NO(1 — 0), respectively. Suppose we have a single observation of n and using this we
want to estimate the parameter 6.

1(a) Find the maximum likelihood estimator 6.
1(b) Show that 6 has zero bias and find its variance.

1(c) Suppose we observe n = 0 for N = 10 trials. Find the upper limit for 6 at a confidence
level of CL = 95% and evaluate numerically.

1(d) Suppose we treat the problem with the Bayesian approach using the Jeffreys prior,
m(0) x \/1(0), where

1(6) = —E [32111[/]

06?

is the expected Fisher information. Find the Jeffreys prior 7(#) and the posterior pdf p(f|n)
as proportionalities.

1(e) Explain how in the Bayesian approach how one would determine an upper limit on 6
using the result from (d). (You do not actually have to calculate the upper limit.)

Explain briefly the differences in the interpretation between frequentist and Bayesian upper
limits.

Solution:

1(a) The likelihood function is given by the binomial distribution evaluated with the single
observed value n and regarded as a function of the unknown parameter 6:

N! n N—n
01— N

L6) = nl(N —n)!

The log-likelihood function is therefore
InL(@) =nlnf+ (N —n)ln(l1—-0)+C,

where C represents terms not depending on 6. Setting the derivative of In L equal to zero,

EﬂnL_E_N—n_O
00 6 1—-0

we find the ML estimator to be



1(b) We are given the expectation and variance of a binomial distributed variable as E[n] =
N6 and V[n| = NO(1 — 0). Using these results we find the expectation value of 6 to be
0 — [n]:E[n]:NG:

— 0
N N ’

and therefore the bias is b = E[f] — # = 0. Similarly we find the variance to be

L Noa—0) _61-0)

Vg =V [} = VIl Nz N

N

1(c) Suppose we observe n = 0 for N = 10 trials. The upper limit on 6 at a confidence level
of CL =1 — « is the value of 6 for which there is a probability « to find as few events as we
found or fewer, i.e.,

a=Pn<0;N,0) = 01— )"0

Solving for # gives the 95% CL upper limit
Oup =1 — /N =1-0.0510=0.26 .
1(d) To find the Jeffreys prior we need the second derivative of In L,
0?’InL __n N —n

002 T2 (1-0)2°
The expected Fisher information is therefore
o?mmL| NO N(1-6) N N N
1) =—-F|—|=—F5+——F=— = .
©) l a6 1 2 " a—er 916 e1-0)

The Jeffreys prior is therefore
1
VO —0)

Using this in Bayes theorem to find the posterior pdf gives

w(0)

6"(1— )N
-9

_ 9n—1/2 1-6 N—-n—1/2 )
91— 0) 1-9)

p(6]n) o< L(n|6)m(0)

1(e) To find a Bayesian upper limit on 6 one simply integrates the posterior pdf so that a
specified probability 1 — « is contained below 6, i.e.,

Bup
1—a:/ p(f|n)do ,
0

solving for 6, gives the upper limit.

A frequentist upper limit as found in (c) is a function of the data designed to be greater than
the true value of the parameter with a fixed probability (the confidence level) regardless of
the parameter’s actual value. A Bayesian interval can be regarded as reflecting a range for
the parameter where it is believed to lie with a fixed probability (the credibility level). Note
that with the Jeffreys prior, one may not necessary use the degree of belief interpretation of
the interval, but rather take it to have a certain probability to cover the true € (which in
general will depend on 0).



Simplified “Errors on Errors” Model

The model in Lectures 11-3, 11-4

Details in: G. Cowan, Statistical Models with Uncertain Error
Parameters, Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778

makes a distinction between the o,,; (~statistical errors), which

are known, and the g, ; ~systematic errors), which are treated
as adjustable parameters.

Here we show a simplified model that does not distinguish
between statistical and systematic errors.
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Curve fitting, averages .+ aata

@(x; H)

Suppose independent + |
y; ~ Gauss, i = 1,...,N, with > ¢

Elyi] = o(zi; p)

Vy;] =0,

1

u are the parameters in the fit function p(x;u).

If we take the g;as known, we have the usual log-likelihood

N

A T 2
In L(p) = _%Z (yi 900(2“#))
1=1 ?

which leads to the Least Squares estimators for u.
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Model with uncertain ¢

f(vlo,B)

If the 6,7 are uncertain, we can take them
as adjustable parameters.

The estimated variances v, = s are
modeled as gamma distributed.

The likelihood becomes

ol 1 202 B
L(l,l,,0'2) — | I 6_(yi_‘10(33i;“)) /201' F(;)v?i—le_ﬁivi
1=1 27’(’0’,&-2 1
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Profile log-likelihood

One can profile over the 6/ in close form.

The log-profile-likelihood is

2 22 (%)

= N o )2
In L/ () = In L(1, 0%) = — )3 (1 - L) In [1 yorply = L))
i=1 i

Quadratic terms replace by sum of logs.

Equivalent to replacing Gauss pdf for y; by Student’s ¢, vy, = 1/2r/

Confidence interval for u becomes sensitive to goodness-of-fit
(increases if data internally inconsistent).

Fitted curve less sensitive to outliers.

Simple program for Student’s ¢ average: stave.py
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