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Statistical Data Analysis
Lecture 2-1

e Functions of random variables

— Single variable, unigue inverse
— Function without unique inverse

— Functions of several random variables
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Functions of a random variable

A function of a random variable is itself a random variable.

£cx)
Suppose x follows a pdf f(x) /\
X
B
Consider a function a(x) e3. o=X
l}(o.)[
What is the pdf g(a)?
CL

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 2



Function of a single random variable

General prescription: g(a)da = /dS f(x) dz

dS = region of x space for which a isin [a, atda].

a(x)

For one-variable case with unique
inverse this is simply

— dx

g(a)da = f(x)dx
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dx ‘
da

~ g(a) = f(a(a) |

10

Statistical Data Analysis / lecture week 2



Example: function with unique inverse

$CxN
§(x)= 2»x , 0 <=2l
. = - p 8 |
—oL Ix T~
X = 2 :LT\__ <
3,(0-3: S—(XCk\)I% - L.Q-_'q' -2 (
- 20w

- 2L e ?‘“)N
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Functions without unique inverse

If inverse of a(x) not unique,
include all dx intervals in dS
which correspond to da:

9(@) = 3 fai(a)

Example: a(z) =

dx

xQ,

—_~
x

~—
©

i
T
da
d_fL' dx1%e dxzﬁe
da ]y, (a)
X1 X2 X
d 1
zi(e) = —va, m(a)=+va, —2= N
ds = [:1:1,:1:1 -+ d::cl] U [xg,wg =+ dwg]
dx f(=va)  f(V/a)
S S = i
o) g =TSR Y
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z1(a)

Statistical Data Analysis / lecture week 2



Change of variable example (cont.)

|
x; N (|

Suppose the pdf of xis  f(x) =

2

and we consider the function a(x) =z° (so0<a<1)

and the inverse has two parts: r =++a

To get the pdf of a we include the contributions from both parts:

g(a)—_\FJrl ‘/aJrl:L, 0<a<l
2 <2ja © 2<%ja 2ala
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Functions of more than one random variable

Consider a vector r.v. x = (xy, ..., x,,) that follows f(x, ..., x,)
and consider a scalar function a(x).

The pdf of a 1s found from

g(a)da' = / : ./dsf(azl, .., Tp)dry...dTn
dS = region of x-space between (hyper)surfaces defined by

a(@) =d, a(@) =d + dd’
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Functions of more than one r.v. (2)

Example: rv.s x, y > 0 follow joint pdf f(x,y),

consider the function z =xy. What is g(z)?

g(z)dz = /.../dsf(a:,y)dwdy
_ /O /Z(z-l-dz)/a? (2.9) dy
| oo = [TraH®

4 dy
s . [ rCn®
0 1 2 3 4 5 0 (7] Y

x (Mellin convolution)
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More on transformation of variables

Consider a random vector Z = (x1,...,zn) Wwith joint pdf f(&).
Form n linearly independent functions #(£) = (y1(Z),...,yn(Z))
for which the inverse functions z1 (%), ..., zn (%)

Then the joint pdf of the vector of functions is ¢g(v) = |J|f(Z)

where Jis the Oy1  Oyo Yn
8332 8332 8i

Jacobian determinant: J = | %1 9v2 Byn
Ozp

ayn

Fore.g. g1(y1) integrate ¢(%) over the unwanted components.
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Statistical Data Analysis
Lecture 2-2

e Expectation values

e Covariance and correlation
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Expectation values

Consider continuous r.v. x with pdf f(x).
Define expectation (mean) valueas E[x] = /:vf(m) dx
Notation (often): E[x] = u =~ “centre of gravity” of pdf.

|
L/*’A,

t *
/b
For discrete rv.s, replace integral by sum: Elzx] = Z waPlE;)

;€S
For a function y(x) with pdf g(y),

Blyl = [ygw)dy = [y(@)f(x)de  (equivalent
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Variance, standard deviation
Variance: V[x] = E[{L’Q] — ,u2 = F[(x — M)Q]
Notation: V[z] = o?

—_— — (0}
Standard deviation: o = V/ o2 /\

!

o ~ width of pdf, same units as x. L

Relation between o and other measures of width, e.g.,
Full Width at Half Max (FWHM) depend on the pdf, e.g.,
FWHM = 2.350 for Gaussian.
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Moments of a distribution

Can characterize shape of a pdf with its moments:
Bla") = [ a"f(x)dv =1,
= nth algebraic moment, e.g., u’; = u (the mean)
El(a - Bla))"] = [ (@ = 0" f(@) d = py

= nth central moment, e.g., u, = 02

Zeroth moment =1 (always). Higher moments may not exist.

rd : “« ”, ~3 - E L — 'LL
3" moment is a measure of “skewness”: U~ =
o
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Expectation values — multivariate case

Suppose we have a 2-D joint pdf f(x,y).

By “expectation value of x” we mean:
Elz] = //a?f(x‘, y) dx dy = /xfx(x) dr = Ly

Sometimes it is useful to consider e.g. the conditional expectation
value of x given y,

Elzly] = /aﬁf(:vly) dx

\
flz,y)

fy(y)
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Covariance and correlation

Define covariance cov[x,y] (also use matrix notation V) as
coviz,y] = Elzy] — papy = El(z — pz) (v — py)]

Correlation coefficient (dimensionless) defined as

covlz, y] Canshow -1 <p<1.

Pxy —
O'xo'y

If x, y, independent, i.e., f(z,y) = fz(x)fy(y)
Elxy] = / / vy f(x,y) dedy = pgpy
— coV[x,y] =0

N.B. converse not always true.
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Correlation (cont.)
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Covariance matrix

Suppose we have a set of n random variables, say, x,,..., x,,.

We can write the covariance of each pair as an n x n matrix:

Vij = covlzi, x| = pijoio;

2
(o p120102 ... PIn010n \
5 Covariance matrix is:
091:G90r) 09 eeo P2n0204 _
symmetric,

V= . .
diagonal = variances,
positive semi-definite:

A 2'Vz >0 for all zeR"”
\ Pn10n01 Pn20n02 ... G, )
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Correlation matrix

Closely related to the covariance matrix is the n x n matrix of
correlation coefficients:

SOV @557

Pij = 0:0;
( L Pip e Pim \
p21 1 ... pon By construction, diagonal
p = elements are p,; =1
\ Pnl  Pn2 .- 1 )
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Correlation vs. independence
¥

Consider a joint pdf such as:

l.e. here f(—x,y) = f(x,p) R

Because of the symmetry, we have E[x] = 0 and also

E|xy] / / FHf(E) drdu—l—/ / xyf(x,y)drdy =0

and so p =0, the two variables x and y are uncorrelated.

But f(v|x) clearly depends on x, so x and y are not independent.
Uncorrelated: the joint density of x and y is not tilted.
Independent: imposing x does not affect conditional pdf of y.
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Statistical Data Analysis
Lecture 2-3

e Error propagation
— goal: find variance of a function
— derivation of formula
— limitations

— special cases
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Error propagation
Suppose we measure a set of values £ = (x1,...,Zn)
and we have the covariances V;; = cov|z;, z;]

which quantify the measurement errors in the x..

Now consider a function y (%) .

What is the variance of y(&) 7

The hard way: use joint pdf £(Z) to find the pdf g(y) ,
then from g(y) find V[y] = E[)?*] — (E[y])>.

Often not practical, f(z) may not even be fully known.
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Error propagation formula (1)

Suppose we had i = E[X]

in practice only estimates given by the measured x

Expand y(Z) to 1st order in a Taylor series about [

y(w)~y(u)+2[ ] (x5 — i)

x;
ox; =i

To find V[y] we need E[y?] and E[y].

Ely(Z)] =~ y(i) since Elz; —p;] =0
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Error propagation formula (2)

Ely?(®)] ~ y?(7) + 2y(i) Z [ Elz; — pi]

&cz] P

kS

n Oy 0
= 2@+ 3 [ y—y] Vi

Putting the ingredients together gives the variance of y(Z)

5 " |0y O
- y oy v
G,j=1 L7 = g=p
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Error propagation formula (3)

If the x; are uncorrelated, i.e., V;; = 02-252-3- , then this becomes

2
0 ~ Z [8%] 022

=
Similar for a set of m functions 4(Z) = (y1(&), ..., ym(Z))
2 | Oy Oy
Up = coVlyr, yl = ) Vij
ii=1 8az@ 8a;j - -
J — L=

or in matrix notation 7 = AV AL . where

Oy; ]

A.. —
J [833] f:,L_[
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Error propagation — limitations

The ‘error propagation’ formulae tell us the y(x)

covariances of a set of functions

y(&) = (y1(Z), ..., ym(Z)) terms of

the covariances of the original variables. o

Limitations: exact only if (&) linear. y(x)

Approximation breaks down if function

nonlinear over a region comparable

in size to the o.. o

X

N.B. We have said nothing about the exact pdf of the x,,
e.g., it doesn’t have to be Gaussian.
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Error propagation — special cases

y=z1+x2 — 0§=0%+0§+2C0V[$1,CEQ]
02 g2 o2 cov|x1, zo]
Y = T1T2 — —g: %: %:2 L=2

That is, if the x; are uncorrelated:
add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio).

A But correlations can change this completely...
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Error propagation - special cases (2)

Consider y = x1 — x> with

COV[$1,$2]
0102

Viy] =1°4+12=2, - o, =1.4
Now suppose p = 1. Then

Viy] =1°+12-2=0, - 0, =0

i.e. for 100% correlation, error in difference — 0.
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Statistical Data Analysis
Lectures 2-4 through 3-2 intro

We will now run through a short catalog of probability functions
and pdfs.

For each (usually) show expectation value, variance,
a plot and discuss some properties and applications.

See also chapter on probability from pdg. 1bl. gov

For a more complete catalogue see e.g. the handbook on

statistical distributions by Christian Walck from
staff.fysik.su.se/~walck/suf9601.pdf
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Some distributions

Distribution/pdf Example use in Particle Physics

Binomial
Multinomial
Poisson
Uniform
Exponential
Gaussian
Chi-square
Cauchy
Landau
Beta
Gamma
Student’s ¢
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Branching ratio

Histogram with fixed N
Number of events found
Monte Carlo method

Decay time

Measurement error
Goodness-of-fit

Mass of resonance
lonization energy loss

Prior pdf for efficiency

Sum of exponential variables
Resolution function with adjustable tails
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Statistical Data Analysis
Lecture 2-4

e Discrete probability distributions
— binomial
— multinomial

— Poisson
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Binomial distribution

Consider N independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial is p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

pp(1 —p)p(1 —p) =p"(L —p)V "
N
n!(N—n)!

But order not important; there are

ways (permutations) to get n successes in N trials, total

probability for n is sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N

' N, — ne1 _ N—n
?n p) DN — )t (1 —p)
random parameters

variable

For the expectation value and variance we find:
N
E[n] = ) nf(n; N,p) = Np

n=0

VIn] = E[n?] — (E[n])? = Np(1 — p)
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Binomial distribution (3)

Binomial distribution for several values of the parameters:

2 0.4
= N=5
qS\ 02 |+ NN p=05 ]
0 HH Hﬂ
0 5 10 15 20
n
S 04
= N=10
= 02 | N p=05
Ll
0 5 10 15 20
n
2 04
= N=20
Q’S\’ 02 t+ p:05 i
) e
0 5 10 15 20

n

f(n:N,p) f(n:N,p)

f(n:N,p)

0.4

0.2

0

0.4

0.2

0.4

0.2

N=20
I N N p=01 |
l Hnnn
0 5 10 15 20
n
N=20
B p=02 |
L
0 5 10 15 20
n
N=20
i p=06 |
nnnﬂHHHHnnn
0 5 10 15 20

n

Example: observe N decays of W*, the number n of which are
W—pv is a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n,, of outcome m.

This is the multinomial distribution for 7 = (nq,...

f(n'N7 )_ nl!’rLQ!-..nm!pl p2 - Pm
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Multinomial distribution (2)

Now consider outcome i as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters NV, p,
E[n;] = Np;, VIn;l = Np;(1 —p;) foralli
One can also find the covariance to be
Vii = Np;(4;; — p;)

Example: 7@ = (nq,...,nm) representsa histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial n in the limit
En]=Np—v.

N — oo, p — 0O,
S 04
. . . R = v=2
— n follows the Poisson distribution: =, | N N
V’I’L 0 } H ” I o
f(n’ ]/) . _e—V (n > O) 0 5 1VO 15 20
n! — n
= 04
= v=5
Enl=v, Vn]l=v. T o2
0 ln [ H H H H I 1.
0 o 10 15 20
Example: number of scattering events g
n with cross section o found for a fixed £ v=10
0.2
nnﬂ"”HHH”ﬂﬂnnn
15 20

integrated luminosity, withy = o [ L dt.
0
0 5 10

n
37
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