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Statistical Data Analysis
Lecture 9-1

e |east squares with histogram data
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LS with histogram data

The fit function in an LS fit is not a pdf, but it could be proportional
to one, e.g., when we fit the “envelope” of a histogram.

Suppose for example, we have an i.i.d. data sample of n values
Xi,..., X, Sampled from a pdf f(x;#). Goal is to estimate 6.

Instead of using all n values, put them in a histogram with N bins,
i.e., ¥, = number of entries in bini: y= (y,..., Yn)-

The model predicts mean values: 0.
Elyi] = 11:(6) 8

‘540-

= f(x;0)dx ;?;30'

bin i 5 20

~nf(x;;0) Az 10-

0

bin centre / \ bin width 0 4 8 ) 12 16
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LS with histogram data (2)

The usual models:

for fixed sample size n, take y ~ multinomial,
if n not fixed, y; ~ Poisson(u;)

Suppose that the expected number of entries in each i, are all > 1
and probability to be in any individual bin p; << 1, one can show

— ¥, indep. and ~ Gauss with g, = \/,ui. (— o; depends on 6).

The (log-) likelihood functions are then

—(yi—pi(0))*/207(0)

H \/%O'z

N . 2 N
InL(0) = —%; (i 07;23)(5)) — Zglnai(ﬂ)nLC
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LS with histogram data (3)

Still define the least-squares estimators to minimize

N
2rm s (Ui — 1:(0))?
X~ (0) = ; 5:(0)2

No longer equivalent to maximum likelihood (equal for u; > 1 ).

Two possibilities for o;:
o, = \u,(0) (LS method)
o, =y, (Modified LS method)

Modified LS can be easier computationally but not defined if
any y,=0.

For either method, 2., ~ chi-square pdf for u; > 1, but this
breaks down for when the y; are not large.
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LS with histogram data — normalization

Do not “fit” the normalization, i.e., n — free parameter v:

ui(6,v) =v f(z;0) dx

bin 2
If you do this, one finds the LS estimator for v is not n, but rather

Xr2nin
2

Urs =n+
A . 2

Software may include adjustable normalization parameter as
default; better to use known .
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N(x)

LS normalization example

Example with n = 400 entries, N = 20 bins:

[ —— data (400 entries)
-—- LS: ¥*=17.3, v = 400 (fixed)

ML: 3£ =17.6,v=400.0+20.0

60

(@)

- —— data (400 entries)

LS: ¥*=17.1,v=4085+20.2

MLS: ¥*=17.8,v=3822+195

N(x)

Expect X?nin around N — m,

60

(b)

— relative error in  large when /N large, n small

Either get n directly from data for LS (or better, use ML).
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Statistical Data Analysis
Lecture 9-2

e Goodness-of-fit from the likelihood ratio
o Wilks’ theorem

e MLE and goodness-of-fit all in one
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Goodness of fit from the likelihood ratio

Suppose we model data using a likelihood L(u) that depends on N
parameters u = (uy,..., ity). Define the statistic

L(p)
L(f)

where g is the ML estimator for u. Value of t, reflects agreement
between hypothesized u and the data.

A .
Good agreement means u = u, so ¢, is small;

Larger ¢, means less compatibility between data and u.

oo
Quantify “goodness of fit” with p-value: p,, = / f(tulp)dt,

tp. ,obs

need this pdf
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Likelihood ratio (2)

Now suppose the parameters u = (uy,..., tty) can be determined by
another set of parameters 8 = (0,,..., 0,,), with M <N.

Want to test hypothesis that the true model is somewhere in the
subspace u = u(0) versus the alternative of the full parameter space

u. Generalize the LR test statistic to be

o fit M parameters

)

i (
g L(f)
N fit N parameters

To get p-value, need pdf f(z,|u(0)).
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Wilks” Theorem

Wilks” Theorem: if the hypothesized w,(0), i = 1,...,N, are true for
some choice of the parameters 8 = (0,...., 0,,), then in the large

sample limit (and provided regularity conditions are satisfied)

/ MLE Of (61,..., QM)

. G L((0)) follows a chi-square distribution for
L(ft N — M degrees of freedom.

MLE Of (/ll,..., lLlN)

The regularity conditions include: the model in the numerator of
the likelihood ratio is “nested” within the one in the denominator,
i.e., u(0) is a special case of u = (uy,..., 1y).

Proof boils down to having all estimators ~ Gaussian.

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.
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Goodness of fit with Gaussian data

Suppose the data are N independent Gaussian distributed values:

yi ~ Gauss(pi, 0i) , i=1,...,N

/N

N measurements and N parameters ( = “saturated model”)

want to estimate known

1
V2TOo;

o—(Wi—pi)? /207

N
Likelihood: L(p)=1]]
i=1

1 (i — i)’
Log-likelihood: InL(u) = 5 Z y O'QH ) +C
i=1 ‘

1

ML estimators:  fi; = y; T =il
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Likelihood ratio for Gaussian data

Now suppose u = u(#), e.g., in an LS fit with u(0) = u(x; 0).

The goodness-of-fit statistic for the test of the hypothesis
u(@) becomes

L(p(9)) i (y: — 11:(6))?

2
5 ~ XN-M

L) & o
N /

chi-square pdf for N-M
degrees of freedom

Here ¢, is the same as y?;, from an LS fit.

So Wilks” theorem formally states the property that we claimed
for the minimized chi-squared from an LS fit with N
measurements and M fitted parameters.
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Likelihood ratio for Poisson data

Suppose the data are a set of values n = (n,,..., ny), e.g., the
numbers of events in a histogram with N bins.

Assume n; ~ Poisson(v)), i = 1,..., N, all independent.

First (for LR denominator) treat v = (vy,..., vy) as all adjustable:

N Vni
Likelihood: L(y) — H i'e_v“'
a7,
N
Log-likelihood: InL(v) = Z [nilny; — ;] + C
i=1
ML estimators: U =mn; , =N
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Goodness of fit with Poisson data (2)

For LR numerator find v(#) with M fitted parameters 8 = (6,,..., 0,,):

L(v(8)) al (@)
b =—=—2 In L(D) =—2; n; In ni\—m(@)—l—ni

if n; =0, skip term

Wilks” theorem: in large-sample limit ¢, ~ X%V—M

Exact in large sample limit; in practice good approximation for
surprisingly small n; (~several).

As before use ¢, to get p-value of v(0),
/ independent of @

po= [ F0(8) dty =1~ Fltyoni N = M)
t

v ,0bs
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Goodness of fit with multinomial data

Similar if data n = (ny,..., ny) follow multinomial distribution:

Ntot!

nl!ng! R

P(n|p,niot) = nN!p’l“p? N

N
E.g. histogram with N bins but fix:  ntot = Z N;
i=1

N
o Vi
Log-likelihood:  InL(v) =) njln— +C (Vi = pintot)
ML estimators:  ; = n; (Only N—1 independent; one

is n,., minus sum of rest.)
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Goodness of fit with multinomial data (2)
The likelihood ratio statistics become:

A

L(v(0 44 Uié
t; =—21n 2(59))):_227%111 7;)

AN

if n; =0, skip term

Wilks: in large sample limit ¢, ~ X%V—M—l

One less degree of freedom than in Poisson case because
effectively only N—1 parameters fitted in denominator of LR.
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Estimators and g.o.f. all at once

Evaluate numerators with @ (not its estimator); if any n; =0,
omit the corresponding log terms:

xp(0) = —QZlnzan’(e)

—v;(0) +n; (Poisson)

Vz(e)

X12\4(0 = —QZ n;In (Multinomial)

These are equal to the corresponding —2 In L(#) plus terms not
depending on 8, so minimizing them gives the usual ML

estimators for 6.

The minimized value gives the statistic 7,, so we get
goodness-of-fit for free.

Steve Baker and Robert D. Cousins, Clarification of the use of the chi-square and
likelihood functions in fits to histograms, NIM 221 (1984) 437.
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Examples of ML/LS fits

Unbinned maximum likelihood (mlFit.py, minimize neglogl)

In L(0) = zn:lnf(xi;H
i=1

0.16 - 0 =0.2046+0.0527

0.00, leHHHLﬂHLHﬂﬂIHJHHlHHHLU[H[HLHUJHLUJHI[II[UJJILLJJIIIIIIIIIIII L

10.0 125 150 17.5 20.0
X
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Examples of ML/LS fits

Least Squares fit (histFit.py, minimize chi2lLS)

9 (yi — Mz‘(9>)2
X“(0) =
; 11;(0)
20.0 Least S 2
17.5_|\ Aeas quares X min — 32.7
6=0.1449+0.0484 M= 38
) dof
§15.01 =0.71
€ 12.5—\ o
3 10.0- Many bins with few
% 7.5 entries, LS not
5.0 expected to be
2.5 - reliable.
0.0
: 20
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Examples of ML/LS fits

Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

= — n; 11
XM : : n;
=1
. o 2 _
501 I\A/IaX|mum Likelihood X min = 353
6=0.2015+0.0530 -
. ndof 37
T 15- p — 055
(-
()
s
© 107 Essentially same result
% as unbinned ML.
5_
= M i
O : ! 1 11
0 4 8 12 16 20
X
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Statistical Data Analysis
Lecture 9-3

e |nterval estimation
e Confidence interval from inverting a test

e Example: limits on mean of Gaussian
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Confidence intervals by inverting a test

In addition to a ‘point estimate’ of a parameter we should report
an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter 6 can be found by
defining a test of the hypothesized value 8 (do this for all 6):

Specify values of the data that are ‘disfavoured’ by 6
(critical region) such that P(data in critical region|0) < a
for a prespecified a, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now invert the test to define a confidence interval as:

set of 6 values that are not rejected in a test of size a
(confidence level CLis 1—a).
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,.

If pp < a, then we reject 6.

The confidence interval at CL = 1 — a consists of those values of
6 that are not rejected.

E.g. an upper limit on @ is the greatest value for which p, > a.
In practice find by setting p, = a and solve for 6.

For a multidimensional parameter space 8 = (0,,... 8,,) use same
idea — result is a confidence “region” with boundary determined

by py = a.
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Coverage probability of confidence interval

If the true value of @ is rejected, then it’s not in the confidence
interval. The probability for this is by construction (equality for

continuous data):
P(reject 8|60) < o = type-| error rate

Therefore, the probability for the interval to contain or “cover” @ is
P(conf. interval “covers” 8|0) > 1 - a

This assumes that the set of 8 values considered includes the true
value, i.e., it assumes the composite hypothesis P(x|H.,0).
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Example: upper limit on mean of Gaussian

When we test the parameter, we should take the critical region to
maximize the power with respect to the relevant alternative(s).

Example: x ~Gauss(u, o)  (take o known)

Test Hy : i = uy versus the alternative Hy : 1 < uy

, W
— Put w, at region of x-space »
characteristic of low u (i.e. at low x) ;
A, /Mo i

Equivalently, take the p-value to be

Zobs 1 B
Puo = P(x < apslpo) = e/ g - g (Toke L0
00 2O o
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Upper limit on Gaussian mean (2)

To find confidence interval, repeat for all u, i.e., set p,, = a and
solve for u, to find the interval’s boundary

Pa,
L /‘L

Ho — Hup = Tobs — U(I)_l(a) = Zobs T O'(I)_l(l . Oé)
This is an upper limit on 4, i.e., higher i have even lower p-value

and are in even worse agreement with the data.

Usually use @ !(a) = —®~!(1—a) so as to express the upper limit as
X, PIUS @ positive quantity. E.g. for o = 0.05, ®-1(1-0.05) = 1.64.
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Upper limit on Gaussian mean (3)

Uy = the hypothetical value of u such that there is only a
probability a to find x < x .

%025

0<$ 0.05

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

W %
S

28



1- vs. 2-sided intervals
Now test: H, : u = u, versus the alternative H, : u # u,

|.e. we consider the
alternative to u, to include
higher and lower values,
so take critical region on
both sides:

Result is a “central” confidence interval [14,, t,):

_ e 9)
Ulo = Tobs — 0P (1 9 E.g. for a = 0.05
o1 (1-2) =1.96~ 2
Mup:xobs+0q)_1 (1_%> ( 2>

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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On the meaning of a confidence interval

Often we report the confidence interval [a,b] together with the
point estimate as an “asymmetric error bar”, e.g.,

é-l'ﬂ '. '- —
- C /] (> 7\/\
a.:—B'CI
A + 0.%1

E.g. (atCL =1-0=68.3%): O — 30.%% _ 0.2

Does this mean P(80.00 < # < 80.56) =68.3%? No, not for a
frequentist confidence interval. The parameter 6 does not fluctuate

upon repetition of the measurement; the endpoints of the interval

do, i.e., the endpoints of the interval fluctuate (they are functions of

data):
) Plato L @l b)) = -«
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Statistical Data Analysis
Lecture 9-4

e Confidence intervals from the likelihood function
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Approximate confidence intervals/regions
from the likelihood function

Suppose we test parameter value(s) 8 = (0, ..., 6,) using the ratio

A(B):M O Xy =
L(0)
Lower A(#) means worse agreement between data and
hypothesized 6. Equivalently, usually define

tg = —21n )\(9)

so higher ¢, means worse agreement between @ and the data.

oo
p-value of @ therefore Po = / f(tg|@) dte
t oDSs
L ™ need pdf
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Confidence region from Wilks’” theorem

Wilks’ theorem says (in large-sample limit and provided
certain conditions hold...)

chi-square dist. with # d.o.f. =
# of componentsin@=(6,, ..., 0,).

ll, n

f(tol6) ~ xz

Assuming this holds, the p-value is

pe =1—F,2(tg) <« setequaltoa

To find boundary of confidence region set p,= o and solve for ¢,:

to=Fg (1— a)

L(6)
L(6)
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Confidence region from Wilks’ theorem (cont.)

i.e., boundary of confidence region in @ space is where
InL(6) =InL(6) — $F,' (1 - )
For example, for 1 —a = 68.3% and n = 1 parameter,

F1(0.683) =1
X1

and so the 68.3% confidence level interval is determined by

1
2
Same as recipe for finding the estimator’s standard deviation, i.e.,

InL(6) = InL() —

[é — 0, 0+ 05) is a68.3% CL confidence interval.
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Example of interval from In L(6)

For n=1 parameter, CL=0.683, 0, = 1.

= T T T T
= R S
T-AT T T+ AT :
2 - o | Our exponential
: : example, now with
only n =5 events.
Can report ML estimate
s L 1 with approx. confidence
interval fromIn L, — 1/2
as “asymmetric error bar”:
5 # = 0.851052
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For increasing number of parameters, CL= 1 — a decreases for

Multiparameter case

confidence region determined by a given

Qa :FX_%I(I—Q)

1l —«
Qa n=1 n=2 n=3 n= n=>
1.0 | 0.683 0.393 0.199 0.090 0.037
20 | 0.843 0.632 0.428 0.264 0.151
4.0 | 0.954 0865 0.739 0.594 0.451
9.0 | 0.997 0.9890 0971 0939 0.891

G. Cowan / RHUL Physics
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Multiparameter case (cont.)

Equivalently, O, increases with n fora givenCL=1 — a.

, 0.

i n=1 =2 n=3 n=4 n=9
0.683 | 1.00 2.30 3.93 4.72 2.89
0.90 2.71 4.61 6.25 1.78 9.24

0.95 3.84 2.99 71.82 9.49 11.1

0.99 6.63 9.21 11.3 13.3 15.1

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9 37



Example: 2 parameter fit:

Example from problem sheet 8, i.i.d. sample of size 200

e~ @1)?/20% (1 — g) e /¢

x~ f(;0,6) =0

| =

\/%

0.16 0 =0.2046+0.0527

0.14 - £=5.1079+0.6446

0.12- Here fit two

6 and ¢.

0.06 -

0.04 -

0.02 1

0.00, lIlIlHﬂlIJIHﬂIIIHJLIHlﬂHHLlllHlHLHUJHLHJHHIIHUJHJJJIIIIIIIIIII LI

100 125 150 175 20.0
X
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Example: 2 parameter fit:

In iminuit v2, usercansetCL=1—«

m.draw_mncontour('theta', 'xi', cl=[0.683, 0.95], size=200)

7.0 1

6.5 -
6.0 1
iz DD ]

9.0 1

4.5 -

4.0 -

T T

0.10 0.15 0.20 0.25 0.30
theta
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http://www-bcf.usc.edu/~gareth/ISL/

Brief intro to multiple regression

Multiple regression® can be seen as an
extension of curve fitting to the case where
the variable x is replaced by a multi-
dimensional x = (x,,...,x,), e.g., fitting a
surface. Here suppose the data are points
(x;, ¥;), i=1,...,N (no error bars) and x is
usually a random variable, often called the
explanatory or predictor variable.

X1

Equivalently, we can view it as an extension to classification with
the discrete class label y =0, 1 replaced by a continuous target y
(and in this context x can also be called the feature vector).

*Note the term "multivariate” regression refers to a vector
target variable y; here we treat only scalar y.
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Target (fit) function and loss function

As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

Ely] = f(x;w)
where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (x;, y;), i = 1,...,NV.

Use these to determine the weights by minimizing a loss function
(analogous to the x?), e.g.,

L(w) = o 3 lys — f(xis w)P
=1
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Linear regression

In linear regression, the fit function
is of the form

n
flw) =wo+ Y w;.

=1

i.e. the problem is equivalent to an
unweighted least-squares fit of a
(hyper-)plane:

Can be generalized to a nonlinear surface with higher order terms,

n n n
f(x; W) = wo + E Wyt E Wi LT E Wik TiTjTh + . ..
i—1 i j=1 ij k=1
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Nonlinear regression

Other examples of nonlinear regression include:
MLP (multilayer perceptron) regression
Boosted decision tree regression
Support vector regression

For MLP regression, as with classification, regard the feature vector
as the layer k=0; i.e., 9,0 = x,.

The ith node of hidden layer k is

A = (w0 + Sl

where / is the activation function (tanh, relu, sigmoid,...).

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9
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MLP Regression (cont.)

For the final layer (~=K), in MLP regression (in contrast to
classification), one omits the activation function, i.e.,

Flxiw) = 0l + 32 uf g
j=1

where ¢ £~ =are the nodes of the last hidden layer (k= K—1).

For info on other types of multiple regression see, e.g.,

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An

Introduction to Statistical Learning with Applications in R, Springer, 2013;
http://www-bcf.usc.edu/~gareth/ISL/

and the scikit-learn documentation.

G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9
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Multiple regression example

Suppose particles with different energies £ and angles 6 (or
equivalently » = — In tan(6/2) ) enter a calorimeter and create a
particle showers that gives signals in three layers, s, s, and s3,
as well as an estimate of #.

Some of the energy leaks through, with increased leakage for
higher energy and more oblique angles (higher 7).

n=-1.5 n=0 n=15

! .
.
! L S P
\ 0 *e o -
o -
l S
l - I
: - S3
| P -7
T
1
l
1
1

-
-
-
-
-
-
-
-
-
=
-
-
-
-
-
-
-
-
Z
-
-
-
-
-
-

The goal is to estimate the target y;, = E,; given feature vectors
x;=(n, s, $,,53); fori=1,...,N training events.
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Energy estimate from sum of signals

A

Naively, one could try just summing the signals: FE = s; + s9 + s3

s1+s2+s3:E

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing
amounts of the energy leak
through undetected.

100 200 300 400 500 600 700 800 900
E
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Linear regression

See MVRegressor.py, here using

regr = linear_model.LinearRegression()

regr.fit(X_train, y_train)

1000
Linear regressor 0.8 Linear regressor
> g8oo{ R*>=0.898
2]
i o 0.4 1
S oy i® o e -’
e d . AN} = J :' NA 'f. ')
g 600 .. . ' 5 .-. ..*':.’1,.'.‘.. - > 3
Q . Teige ‘Ce . "0.'.'.1»:‘.'.’.:. ) .
T IO | 0.0 <L SeR AT '
8 . ‘e’ '.'" °'.' o '{%{'.t}’.;ﬂ;
£ 400- e .
g 400 e n Lt
% %0 %™ T
@ v ~0.44%
(@] o0 o <. —
o 200 - (r) =-0.022
ud or=0.165
—0.81 RMS err. = 0.167
O T T T T T T T T
0 200 400 600 800 1000 200 400 600 800

true energy (GeV)

Average relative resolution 16.7%.
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MLP Regression

regr = MLPRegressor(hidden_layer sizes=(10,20,20,10), activation="relu’

regr.fit(X_train, y_train)

1000
MLP regressor (10, 20, 20, 10)
800 A R? = 0.973
600 - © eee,

400 +

200 1

reconstructed energy (GeV)

0 200 400 600

true energy (GeV)

800

1000

0.81
0.41
0.0

—04—:'

—0.8 -

MLP regressor (10, 20, 20, 10)

ol el oot -
o} IRA L, -.er-}"sa- CA S
‘,v_\‘)q ., Waif \0"' o 3
°ge ve B S
§*
(r) =-0.002
or=0.100

RMS err. = 0.100

600 800

(GeV)

400
true energy

200

Better resolution (10%), here significant bias at low energies.
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Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision
tree, support vector regression,...).

Some simple code using scikit-learn and a short write-up (from a
year-3 project) is on the course webpage.
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LS example: refraction data from Ptolemy

Astronomer Claudius Ptolemy obtained data on refraction of

light by water in around 140 A.D.:
Angles of incidence and

refraction (degrees)
9i Or

10 8
air fﬂ 20 151
30 221

water j 40 29
L 50 35

0; incident ray

copper disc 60 40%
refractedray / © o 45%
' 80 50

Suppose the angle of incidence is set with negligible error, and
the measured angle of refraction has a standard deviation of %"
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Laws of refraction

A commonly used law of refraction was
0, = ab; ,
although it is reported that Ptolemy preferred
0. = ab; — BH? .

The law of refraction discovered by Ibn Sahl in 984 (and
rediscovered by Snell in 1621) is

= sin~! (Sin gi)
= .

where r = n/n; is the ratio of indices of refraction of the two media.
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6, (degrees)
N w H u (®)]
o o o o o

[
o

LS fit: 6. = a0,

data

-4 6r=a6|

X2/Ngos = 134.6/7
p=6.7%X 10726

20 40 60
6; (degrees)
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LS fit: 6. = a6, — 0.

2

60
data
50{ =—— 6, =ab; — BO?
X?/ngor = 0.0/6
’g 40 p=10
g
2 30
=&
o 20
10 -
O T T T T
0 20 40 60 80

6; (degrees)
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LS fit: Snell’s Law

60
data
501 —— 6, =sin"1[(sind;)/r] '
X2/Ngof = 14.0/7
2491 ,=0051
g
2 30
2,
D 20 -
10 -
0 T T T T
0 20 40 60 80

6, (degrees)

Fitted index of refraction of water »=1.3116 == 0.0056 found not
quite compatible with currently known value 1.330.
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