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Statistical Data Analysis
Lecture 9-1

• Least squares with histogram data
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LS with histogram data
The fit function in an LS fit is not a pdf, but it could be proportional 
to one, e.g., when we fit the “envelope” of a histogram.

Suppose for example, we have an i.i.d. data sample of n values  
x1,..., xn sampled from a pdf f(x;θ).  Goal is to estimate θ.

Instead of using all n values, put them in a histogram with N bins, 
i.e., yi = number of entries in bin i:  y = (y1,..., yN).

The model predicts mean values:

bin centre bin width
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LS with histogram data (2)
The usual models:

for fixed sample size n, take y ~ multinomial,
if n not fixed, yi ~ Poisson(μi)

Suppose that the expected number of entries in each μi are all ≫ 1 
and probability to be in any individual bin pi≪ 1, one can show

→ yi indep. and ~ Gauss with σi ≈ √μi.   (→ σi depends on θ).

The (log-) likelihood functions are then
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LS with histogram data (3)
Still define the least-squares estimators to minimize

No longer equivalent to maximum likelihood (equal for μi≫ 1 ).

Two possibilities for σi:

σi = √μi(θ) (LS method)

σi = √yi (Modified LS method)

Modified LS can be easier computationally but not defined if
any yi = 0.

For either method, χ2min ~ chi-square pdf for μi≫ 1, but  this 
breaks down for when the μi are not large.
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LS with histogram data — normalization

Do not “fit” the normalization, i.e., n → free parameter ν:

If you do this, one finds the LS estimator for ν is not n, but rather

Software may include adjustable normalization parameter as 
default; better to use known n.
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LS normalization example
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Statistical Data Analysis
Lecture 9-2

• Goodness-of-fit from the likelihood ratio

• Wilks’ theorem

• MLE and goodness-of-fit all in one
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Goodness of fit from the likelihood ratio
Suppose we model data using a likelihood L(μ) that depends on N
parameters μ = (μ1,..., μΝ).  Define the statistic

where μ is the ML estimator for μ.  Value of tμ reflects agreement 
between hypothesized μ and the data.  

Good agreement means μ ≈ μ, so tμ is small;

Larger tμ means less compatibility between data and μ.

⌃

⌃

Quantify “goodness of fit” with p-value:

need this pdf
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Likelihood ratio (2)
Now suppose the parameters μ = (μ1,..., μΝ) can be determined by
another set of parameters θ = (θ1,..., θM), with M < N.

Want to test hypothesis that the true model is somewhere in the 
subspace μ = μ(θ) versus the alternative of the full parameter space 
μ.   Generalize the LR test statistic to be

fit N parameters

fit M parameters

To get p-value, need pdf f(tμ|μ(θ)).
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Wilks’ Theorem
Wilks’ Theorem: if the hypothesized μi(θ), i = 1,...,N, are true for 
some choice of the parameters θ = (θ1,..., θM), then in the large 
sample limit (and provided regularity conditions are satisfied)

follows a chi-square distribution for 
N – M degrees of freedom.

MLE of (θ1,..., θM) 

MLE of (μ1,..., μΝ)

The regularity conditions include: the model in the numerator of 
the likelihood ratio is “nested” within the one in the denominator, 
i.e., μ(θ) is a special case of μ = (μ1,..., μΝ).

Proof boils down to having all estimators ~ Gaussian.
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Goodness of fit with Gaussian data
Suppose the data are N independent Gaussian distributed values:

knownwant to estimate

Likelihood:

Log-likelihood:

ML estimators:

N measurements and N parameters ( = “saturated model”)
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Likelihood ratio for Gaussian data
Now suppose μ = μ(θ), e.g., in an LS fit with μi(θ) = μ(xi; θ).

The goodness-of-fit statistic for the test of the hypothesis
μ(θ) becomes

Here tμ is the same as χ2min from an LS fit.

So Wilks’ theorem formally states the property that we claimed
for the minimized chi-squared from an LS fit with N
measurements and M fitted parameters.

chi-square pdf for N-M
degrees of freedom
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Likelihood ratio for Poisson data
Suppose the data are a set of values n = (n1,..., nΝ), e.g., the
numbers of events in a histogram with N bins.

Assume ni ~ Poisson(νi), i = 1,..., N, all independent.  

First (for LR denominator) treat ν = (ν1,..., νΝ) as all adjustable:

Likelihood:

Log-likelihood:

ML estimators:
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Goodness of fit with Poisson data (2)
For LR numerator find ν(θ) with M fitted parameters θ = (θ1,..., θM):

Wilks’ theorem:  in large-sample limit  

Exact in large sample limit; in practice good approximation for 
surprisingly small ni (~several).

As before use tν to get p-value of ν(θ),
independent of θ

if ni = 0, skip term
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Goodness of fit with multinomial data

Similar if data n = (n1,..., nΝ) follow multinomial distribution:

E.g. histogram with N bins but fix: 

Log-likelihood:

ML estimators: (Only N-1 independent; one
is ntot minus sum of rest.)
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Goodness of fit with multinomial data (2)

The likelihood ratio statistics become:

One less degree of freedom than in Poisson case because 
effectively only N-1 parameters fitted in denominator of LR.

Wilks:  in large sample limit

if ni = 0, skip term
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Estimators and g.o.f. all at once
Evaluate numerators with θ (not its estimator); if any ni = 0, 
omit the corresponding log terms:

(Poisson)

(Multinomial)

These are equal to the corresponding -2 ln L(θ) plus terms not 
depending on θ, so minimizing them gives the usual ML 
estimators for θ.

The minimized value gives the statistic tν, so we get
goodness-of-fit for free.
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Examples of ML/LS fits
Unbinned maximum likelihood (mlFit.py, minimize negLogL)

No useful measure
of goodness-of-fit
from unbinned ML.
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Examples of ML/LS fits
Least Squares fit (histFit.py, minimize chi2LS)

χ2min = 32.7
ndof = 38
p = 0.71

Many bins with few 
entries, LS not 
expected to be 
reliable.
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Examples of ML/LS fits
Multinomial maximum likelihood fit (histFit.py, minimize chi2M)

χ2min = 35.3
ndof = 37
p = 0.55

Essentially same result
as unbinned ML.
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Statistical Data Analysis
Lecture 9-3

• Interval estimation

• Confidence interval from inverting a test

• Example:  limits on mean of Gaussian
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Confidence intervals by inverting a test
In addition to a ‘point estimate’ of a parameter we should report 
an interval reflecting its statistical uncertainty.  

Confidence intervals for a parameter θ can be found by 
defining a test of the hypothesized value θ (do this for all θ): 

Specify values of the data that are ‘disfavoured’ by θ
(critical region) such that P(data in critical region|θ) ≤ α
for a prespecified α, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ.

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α
(confidence level CL is 1- α).
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Relation between confidence interval and p-value
Equivalently we can consider a significance test for each
hypothesized value of θ, resulting in a p-value, pθ.  

If pθ ≤ α, then we reject θ. 

The confidence interval at CL = 1 – α consists of those values of 
θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which pθ > α. 

In practice find by setting pθ = α and solve for θ.

For a multidimensional parameter space θ = (θ1,... θM) use same 
idea – result is a confidence “region” with boundary determined 
by pθ = α.
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Coverage probability of confidence interval
If the true value of θ is rejected, then it’s not in the confidence 
interval.  The probability for this is by construction (equality for 
continuous data):

P(reject θ|θ) ≤ α = type-I error rate

Therefore, the probability for the interval to contain or “cover” θ is

P(conf. interval “covers” θ|θ) ≥ 1 – α

This assumes that the set of θ values considered includes the true 
value, i.e., it assumes the composite hypothesis P(x|H,θ).
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When we test the parameter, we should take the critical region to 
maximize the power with respect to the relevant alternative(s).  

Example:  x ~ Gauss(μ, σ) (take σ known)

Test H0 : μ = μ0 versus the alternative H1 : μ < μ0

→ Put wμ at region of x-space 
characteristic of low μ (i.e. at low x)

Equivalently, take the p-value to be

Example: upper limit on mean of Gaussian
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Upper limit on Gaussian mean (2)
To find confidence interval, repeat for all μ0, i.e., set pμ0 = α and 
solve for μ0 to find the interval’s boundary

This is an upper limit on μ, i.e., higher μ have even lower p-value 
and are in even worse agreement with the data.

Usually use Φ-1(α) = -Φ-1(1-α) so as to express the upper limit as 
xobs plus a positive quantity. E.g. for α = 0.05, Φ-1(1-0.05) = 1.64.
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μup = the hypothetical value of μ such that there is only a 
probability α to find x < xobs.

Upper limit on Gaussian mean (3)
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1- vs. 2-sided intervals
Now test: H0 : μ = μ0 versus the alternative H1 : μ ≠ μ0

Result is a “central” confidence interval [μlo, μup]:

I.e. we consider the 
alternative to μ0 to include 
higher and lower values, 
so take critical region on 
both sides:

E.g. for  

Note upper edge of two-sided interval is higher (i.e. not as tight
of a limit) than obtained from the one-sided test.
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On the meaning of a confidence interval
Often we report the confidence interval [a,b] together with the 
point estimate as an “asymmetric error bar”, e.g.,

E.g. (at CL  = 1 – α = 68.3%):

Does this mean P(80.00 < θ < 80.56) = 68.3%?  No, not for a 
frequentist confidence interval.  The parameter θ does not fluctuate 
upon repetition of the measurement; the endpoints of the interval 
do, i.e., the endpoints of the interval fluctuate (they are functions of 
data): 
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Statistical Data Analysis
Lecture 9-4

• Confidence intervals from the likelihood function
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Approximate confidence intervals/regions 
from the likelihood function

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define

so higher tθ means worse agreement between θ and the data.

p-value of θ therefore 

need pdf
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Confidence region from Wilks’ theorem
Wilks’ theorem says (in large-sample limit and provided 
certain conditions hold...)

chi-square dist. with # d.o.f. = 
# of components in θ = (θ1, ..., θn).

Assuming this holds, the p-value is

To find boundary of confidence region set pθ= α and solve for tθ:

Recall also 

← set equal to α
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Confidence region from Wilks’ theorem (cont.)
i.e., boundary of confidence region in θ space is where

For example, for 1 – α = 68.3% and n = 1 parameter,

and so the 68.3% confidence level interval is determined by

Same as recipe for finding the estimator’s standard deviation, i.e.,

is a 68.3% CL confidence interval.
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Example of interval from ln L(θ)
For n=1 parameter, CL = 0.683, Qα = 1.

Our exponential 
example, now with
only n = 5 events.

Can report ML estimate
with approx. confidence
interval from ln Lmax – 1/2
as “asymmetric error bar”:
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Multiparameter case

For increasing number of parameters, CL = 1 – α decreases for
confidence region determined by a given 
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Multiparameter case (cont.)

Equivalently, Qα increases with n for a given CL = 1 – α.
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Example:  2 parameter fit:

x ~ 

Example from problem sheet 8, i.i.d. sample of  size 200

Here fit two
parameters:
θ and ξ.
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Example:  2 parameter fit:
In iminuit v2, user can set CL = 1 − α



40G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

Extra slides
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Brief intro to multiple regression
Multiple regression* can be seen as an 
extension of curve fitting to the case where 
the variable x is replaced by a multi-
dimensional x = (x1,...,xn), e.g., fitting a 
surface.  Here suppose the data are points
(xi, yi), i = 1,...,N (no error bars) and x is 
usually a random variable, often called the 
explanatory or predictor variable.

http://www-bcf.usc.edu/~gareth/ISL/ 

Equivalently, we can view it as an extension to classification with
the discrete class label y = 0, 1 replaced by a continuous target y
(and in this context x can also be called the feature vector).

*Note the term ”multivariate” regression refers to a vector 
target variable y; here we treat only scalar y.
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Target (fit) function and loss function
As in the case of curve fitting, we assume some parametric function
of x that represents the mean of the target variable

where w is a vector of adjustable parameters (“weights”).

Suppose we have training data consisting of (xi, yi), i = 1,...,N.

Use these to determine the weights by minimizing a loss function
(analogous to the χ2), e.g.,
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Linear regression
In linear regression, the fit function 
is of the form

i.e. the problem is equivalent to an 
unweighted least-squares fit of a 
(hyper-)plane:

http://www-bcf.usc.edu/~gareth/ISL/ 

Can be generalized to a nonlinear surface with higher order terms,
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Nonlinear regression
Other examples of nonlinear regression include:

MLP (multilayer perceptron) regression

Boosted decision tree regression

Support vector regression

For MLP regression, as with classification, regard the feature vector 
as the layer k = 0; i.e., φi(0)= xi.

The ith node of hidden layer k is

where h is the activation function (tanh, relu, sigmoid,...).
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MLP Regression (cont.)
For the final layer (k=K), in MLP regression (in contrast to 
classification), one omits the activation function, i.e.,

where φj(K−1)= are the nodes of the last hidden layer (k = K−1).

For info on other types of multiple regression see, e.g., 

http://www-bcf.usc.edu/~gareth/ISL/ 

and the scikit-learn documentation.
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Multiple regression example
Suppose particles with different energies E and angles θ (or 
equivalently η = − ln tan(θ/2) ) enter a calorimeter and create a 
particle showers that gives signals in three layers, s1, s2 and s3, 
as well as an estimate of η.

Some of the energy leaks through, with increased leakage for 
higher energy and more oblique angles (higher η).

The goal is to estimate the target yi = Ei given feature vectors 
xi = (η, s1, s2,s3)i for i = 1,...,N training events.
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Energy estimate from sum of signals

Naively, one could try just summing the signals:

Gives very poor resolution
because the particles have a
distribution of energies and
angles and hence differing 
amounts of the energy leak 
through undetected.
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Linear regression
See MVRegressor.py, here using

regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)

Average relative resolution 16.7%.
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MLP Regression
regr = MLPRegressor(hidden_layer_sizes=(10,20,20,10), activation='relu'
regr.fit(X_train, y_train)

Better resolution (10%), here significant bias at low energies.



50G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 9

Refinements for multiple regression

One can try many improvements:

Scaling of predictor and target variables, e.g., standardize to zero 
mean and unit variance.

Use cross-validation to assess accuracy (and hence use entire sample 
of events for training.

Try different loss functions.

Try different regression algorithms (ridge regression, lasso, decision 
tree, support vector regression,...).

Some simple code using scikit-learn and a short write-up (from a 
year-3 project) is on the course webpage.
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LS example:  refraction data from Ptolemy
Astronomer Claudius Ptolemy obtained data on refraction of
light by water in around 140 A.D.:

Angles of incidence and
refraction (degrees)

Suppose the angle of incidence is set with negligible error, and 
the measured angle of refraction has a standard deviation of ½°.
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Laws of refraction
A commonly used law of refraction was

although it is reported that Ptolemy preferred

The law of refraction discovered by Ibn Sahl in 984 (and 
rediscovered by Snell in 1621) is

where r = nr/ni is the ratio of indices of refraction of the two media.

,

.

.
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LS fit:  θr = αθi

p = 6.7 ⨉ 10-26
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p = 1.0

LS fit:  θr = αθi - βθi
2
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LS fit:  Snell’s Law

p = 0.051

Fitted index of refraction of water r = 1.3116 ± 0.0056  found not 
quite compatible with currently known value 1.330.


