Statistical Data Analysis 2022/23 Lecture Week 3

London Postgraduate Lectures on Particle Physics University of London MSc/MSci course PH4515

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Course web page via RHUL moodle (PH4515) and also www.pp.rhul.ac.uk/~cowan/stat_course.html

Some distributions

Distribution/pdf	Example use in Particle Physics	
Binomial	Branching ratio	
Multinomial	Histogram with fixed N	
Poisson	Number of events found	
Uniform	Monte Carlo method	
Exponential	Decay time	
Gaussian	Measurement error	
Chi-square	Goodness-of-fit	
Cauchy	Mass of resonance	
Landau	Ionization energy loss	
Beta	Prior pdf for efficiency	
Gamma	Sum of exponential variables	
Student's t	Resolution function with adjustable tails	

Statistical Data Analysis Lecture 3-1

- Continuous probability density functions
 - Uniform
 - Exponential

Uniform distribution

Notation: *x* follows a uniform distribution between α and β write as: $x \sim U[\alpha, \beta]$

Uniform distribution (2)

Very often used with $\alpha = 0$, $\beta = 1$ (e.g., Monte Carlo method).

For any r.v. x with pdf f(x), cumulative distribution F(x), the function y = F(x) is uniform in [0,1]:

$$g(y) = f(x) \left| \frac{dx}{dy} \right| = \frac{f(x)}{|dy/dx|}$$
$$= \frac{f(x)}{|dF/dx|} = \frac{f(x)}{f(x)} = 1, \quad 0 \le y \le 1$$

because f(x) = dF/dx = dy/dx

Uniform distribution: particle detector example

Uniform distribution: particle decay example

Decay
$$\pi^{\circ} \rightarrow 88$$
 in π° rest frame:
 $\pi^{\circ} \rightarrow 88$ in π° decay isotropic:
 $\cos \theta \sim U[-1,1]$
 $\phi \sim U[0,2\pi]$

$$E_{\sigma_{i}} \sim U[\underline{E}_{\min}, \underline{E}_{\max}]$$

$$E_{\min} = \frac{1}{2} E_{\pi}(1-\beta)$$

$$E_{\max} = \frac{1}{2} E_{\pi}(1+\beta)$$

$$\beta = N_{\pi}/c$$

Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

Exponential distribution (2)

Example: proper decay time *t* of an unstable particle

$$f(t; \tau) = \frac{1}{\tau} e^{-t/\tau}$$
 (τ = mean lifetime)

Lack of memory (unique to exponential): $f(t - t_0 | t \ge t_0) = f(t)$

Question for discussion:

A cosmic ray muon is created 30 km high in the atmosphere, travels to sea level and is stopped in a block of scintillator, giving a start signal at t_0 . At a time t it decays to an electron giving a stop signal. What is distribution of the difference between stop and start times, i.e., the pdf of $t - t_0$ given $t > t_0$?

Statistical Data Analysis Lecture 3-2

- The Gaussian (normal) distribution
 - Univariate Gaussian
 - Standardized random variables
 - Location and scale parameters
 - Central Limit Theorem
 - Multivariate Gaussian

Gaussian (normal) distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

х

Standardized random variables

If a random variable y has pdf f(y) with mean μ and std. dev. σ , then the *standardized* variable

$$x = rac{y-\mu}{\sigma}$$
 has the pdf $g(x) = f(y(x)) \left| rac{dy}{dx} \right| = \sigma f(\mu + \sigma x)$

has mean of zero and standard deviation of 1.

Often work with the *standard* Gaussian distribution ($\mu = 0. \sigma = 1$) using notation:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \Phi(x) = \int_{-\infty}^x \varphi(x') dx'$$

Then e.g. $y = \mu + \sigma x$ follows

$$f(y) = \frac{1}{\sigma}\varphi\left(\frac{y-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma}}e^{-(y-\mu)^2/2\sigma^2}$$

G. Cowan / RHUL Physics

Digression: location/scale parameters

If a pdf f(x; a) depending on a parameter *a* can be written as

$$f(x;a) = f(x-a;0)$$

then *a* is called a location parameter. Adjusting *a* shifts the pdf to the right/left without changing its shape.

The parameter μ of the Gaussian is an example of a location parameter.

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

Digression: location/scale parameters (2)

If a pdf *f*(*x*; *b*) depending on a parameter *b* can be written as

$$f(x;b) = \frac{1}{b}f(x/b;1)$$

then *b* is called a scale parameter. Adjusting *b* changes the "units" of the random variable.

The parameter ξ of the exponential is an example of a scale parameter.

$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$$

Or if a pdf f(x; a, b) has a location parameter a and can be written

$$f(x;a,b) = \frac{1}{b}f\left(\frac{x-a}{b};0,1\right)$$

then *a* and *b* are said to be location and scale parameters. Example: μ and σ of Gaussian.

G. Cowan / RHUL Physics

Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the Central Limit Theorem:

For *n* independent r.v.s x_i with finite variances σ_i^2 , mean values μ_i , otherwise arbitrary pdfs, consider the sum

$$y = \sum_{i=1}^{n} x_i$$

 \boldsymbol{n}

In the limit $n \rightarrow \infty$, y is a Gaussian r.v. with

$$E[y] = \sum_{i=1}^{n} \mu_i$$
 $V[y] = \sum_{i=1}^{n} \sigma_i^2$

Measurement errors are often the sum of many contributions, so frequently measured values can be treated as Gaussian r.v.s.

G. Cowan / RHUL Physics

Central Limit Theorem (2)

Versions of CLT differ in criteria for convergence and requirement (or not) of same pdf for all x_i .

See e.g. en.wikipedia.org/wiki/Central_limit_theorem

Classical CLT: all x_i independent and have same pdf with finite variance, can be proved using characteristic functions (Fourier transforms), see, e.g., SDA Chapter 10.

Physicist's CLT: for finite *n*, the sum $\sum_{i=1}^{n} x_i$ becomes approximately Gaussian to the extent that the fluctuation of the sum is not dominated by one (or few) terms.

Far enough in the tails the approximation generally breaks down.

Central Limit Theorem (3)

Good example: velocity component of air molecule $v_x = \sum_i \delta v_{xi}$

If v_x , v_y , $v_z \sim$ Gaussian, then

 $v = (v_x^2 + v_y^2 + v_z^2)^{1/2} \sim Maxwell-Boltzmann$

OK example: total deflection of charged particle from multiple Coulomb scattering. (Rare large-angle scatters → non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin gas layer. Rare collisions make up large fraction of energy loss, cf. Landau pdf.

G. Cowan / RHUL Physics

Multivariate Gaussian distribution

Multivariate Gaussian pdf for the vector $\vec{x} = (x_1, \dots, x_n)$:

$$f(\vec{x};\vec{\mu},V) = \frac{1}{(2\pi)^{n/2}|V|^{1/2}} \exp\left[-\frac{1}{2}(\vec{x}-\vec{\mu})^T V^{-1}(\vec{x}-\vec{\mu})\right]$$

 $\vec{x}, \ \vec{\mu}$ are column vectors, $\vec{x}^T, \ \vec{\mu}^T$ are transpose (row) vectors,

$$E[x_i] = \mu_i, \quad \operatorname{Cov}[x_i, x_j] = V_{ij}.$$

Marginal pdf of each x_i is Gaussian with mean μ_i , standard deviation $\sigma_i = \sqrt{V_{ii}}$.

Two-dimensional Gaussian distribution

$$f(x_1, x_2; \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) \right] \right\}$$

where $\rho = cov[x_1, x_2]/(\sigma_1 \sigma_2)$ is the correlation coefficient.

Statistical Data Analysis Lecture 3-3

- More continuous probability density functions
 - Chi-square
 - Cauchy
 - Landau
 - Beta
 - Gamma
 - Student's t

Chi-square (χ^2) distribution

The chi-square pdf for the continuous r.v. z ($z \ge 0$) is defined by

For independent Gaussian x_i , i = 1, ..., n, means μ_i , variances σ_i^2 ,

$$z = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \quad \text{follows } \chi^2 \text{ pdf with } n \text{ dof.}$$

Example: goodness-of-fit test variable especially in conjunction with method of least squares.

G. Cowan / RHUL Physics

Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. x is defined by

$$f(x; \Gamma, x_0) = \frac{1}{\pi} \frac{\Gamma/2}{\Gamma^2/4 + (x - x_0)^2}$$

$$(\Gamma = 2, x_0 = 0 \text{ is the Cauchy pdf.})$$

$$E[x] \text{ not well defined, } V[x] \to \infty.$$

$$x_0 = \text{mode (most probable value)}$$

$$\Gamma = \text{full width at half maximum}$$

$$C = \frac{1}{\pi} \frac{\Gamma/2}{\Gamma^2/4 + (x - x_0)^2}$$

Example: mass of resonance particle, e.g. ρ , K^* , ϕ^0 , ... Γ = decay rate (inverse of mean lifetime)

G. Cowan / RHUL Physics

Landau distribution

For a charged particle with $\beta = v / c$ traversing a layer of matter of thickness d, the energy loss Δ follows the Landau pdf:

L. Landau, J. Phys. USSR **8** (1944) 201; see also W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. **30** (1980) 253.

G. Cowan / RHUL Physics

Landau distribution (2)

Beta distribution

 $E[x] = \frac{\alpha}{\alpha + \beta}$

$$f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} , \qquad 0 \le x \le 1$$

$$V[x] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Often used to represent pdf of continuous r.v. nonzero only between finite limits, e.g., $y = a_0 + a_1 x$, $a_0 \le y \le a_0 + a_1$

Gamma distribution

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \qquad x \ge 0$$

$$E[x] = \alpha\beta$$

$$V[x] = \alpha \beta^2$$

Often used to represent pdf of continuous r.v. nonzero only in $[0,\infty]$.

Also e.g. sum of *n* exponential r.v.s or time until *n*th event in Poisson process ~ Gamma

Student's t distribution

$$f(x;\nu) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\,\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-\left(\frac{\nu+1}{2}\right)}$$

G. Cowan / RHUL Physics

Student's *t* distribution (2)

If $x \sim \text{Gaussian}$ with $\mu = 0, \sigma^2 = 1$, and

- $z \sim \chi^2$ with *n* degrees of freedom, then
- $t = x / (z/n)^{1/2}$ follows Student's t with v = n.

This arises in problems where one forms the ratio of a sample mean to the sample standard deviation of Gaussian r.v.s.

The Student's *t* provides a bell-shaped pdf with adjustable tails, ranging from those of a Gaussian, which fall off very quickly, $(v \rightarrow \infty)$, but in fact already very Gauss-like for v = two dozen), to the very long-tailed Cauchy (v = 1).

Developed in 1908 by William Gosset, who worked for the Guinness Brewery and published under the pseudonym "Student".

BY STUDENT.

G. Cowan / RHUL Physics

Statistical Data Analysis Lecture 3-4

- The Monte Carlo method
 - basic ingredients
 - random number generators
 - transformation method
 - acceptance-rejection method
 - example uses

The Monte Carlo method

What it is: a numerical technique for calculating probabilities and related quantities using sequences of random numbers.

The usual steps:

- (1) Generate sequence $r_1, r_2, ..., r_m$ independent and uniform on [0, 1].
- (2) Use this to produce another sequence x₁, x₂, ..., x_n independent and distributed according to some pdf f(x) in which we're interested (x can be a vector).
- (3) Use the x values to estimate some property of f(x), e.g., fraction of x values with a < x < b gives $\int_a^b f(x) dx$.
 - → MC calculation = integration (at least formally)
- MC generated values = 'simulated data'
 - \rightarrow use for testing statistical procedures

G. Cowan / RHUL Physics

g(r)

0

1

Random number generators

Goal: generate uniformly distributed values in [0, 1]. Toss coin for e.g. 32 bit number... (too tiring).

 \rightarrow 'random number generator'

= computer algorithm to generate $r_1, r_2, ..., r_n$.

Example: multiplicative linear congruential generator (MLCG)

- $n_{i+1} = (a n_i) \mod m$, where
- $n_i = integer$
- a =multiplier
- m = modulus
- $n_0 =$ seed (initial value)

N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2. This rule produces a sequence of numbers n_0 , n_1 , ...

G. Cowan / RHUL Physics

Random number generators (2) The sequence is (unfortunately) periodic! Example (see Brandt Ch 4): $a = 3, m = 7, n_0 = 1$

$$n_1 = (3 \cdot 1) \mod 7 = 3$$

 $n_2 = (3 \cdot 3) \mod 7 = 2$
 $n_3 = (3 \cdot 2) \mod 7 = 6$
 $n_4 = (3 \cdot 6) \mod 7 = 4$
 $n_5 = (3 \cdot 4) \mod 7 = 5$
 $n_6 = (3 \cdot 5) \mod 7 = 1 \quad \leftarrow \text{ sequence repeats}$

Choose a, m to obtain long period (maximum = m - 1); m usually close to the largest integer that can represented in the computer. Only use a subset of a single period of the sequence.

G. Cowan / RHUL Physics

Random number generators (3)

 $r_i = n_i/n_{max}$ are in [0, 1] but are they independent and uniform? Choose a, m so that the r_i pass various tests of randomness: uniform distribution in [0, 1], all values independent (no correlations between pairs),

e.g. L'Ecuyer, Commun. ACM **31** (1988) 742 suggests

Far better generators available, e.g. **TRandom3**, based on Mersenne twister algorithm, period = $2^{19937} - 1$ (a "Mersenne prime"). See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4. G. Cowan / RHUL Physics Statistical Data Analysis / lecture week 3 33

The transformation method

Given $r_1, r_2, ..., r_n$ uniform in [0, 1], find $x_1, x_2, ..., x_n$ that follow f(x) by finding a suitable transformation x(r).

G. Cowan / RHUL Physics

Example of the transformation method

Exponential pdf: $f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}$ $(x \ge 0)$

Set
$$\int_0^x \frac{1}{\xi} e^{-x'/\xi} dx' = r$$
 and solve for $x(r)$.

$$\rightarrow x(r) = -\xi \ln(1-r) \quad (x(r) = -\xi \ln r \text{ works too.})$$

The acceptance-rejection method

- (1) Generate a random number *x*, uniform in $[x_{\min}, x_{\max}]$, i.e. $x = x_{\min} + r_1(x_{\max} x_{\min})$, r_1 is uniform in [0,1].
- (2) Generate a 2nd independent random number u uniformly distributed between 0 and f_{max} , i.e. $u = r_2 f_{max}$.
- (3) If u < f(x), then accept x. If not, reject x and repeat.

G. Cowan / RHUL Physics

Example with acceptance-rejection method

$$f(x) = \frac{3}{8}(1+x^2)$$

(-1 \le x \le 1)

x

If dot below curve, use x value in histogram.

Improving efficiency of the acceptance-rejection method

The fraction of accepted points is equal to the fraction of the box's area under the curve.

For very peaked distributions, this may be very low and thus the algorithm may be slow.

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms to f(x) more closely, where h(x) is a pdf from which we can generate random values and C is a constant.

Generate points uniformly over C h(x).

If point is below f(x), accept x.

Monte Carlo event generators

Simple example: $e^+e^- \rightarrow \mu^+\mu^-$

Generate $\cos\theta$ and φ :

$$e^+$$
 $e^ e^-$

$$f(\cos\theta; A_{\text{FB}}) \propto \left(1 + \frac{8}{3}A_{\text{FB}}\cos\theta + \cos^2\theta\right),$$
$$g(\phi) = \frac{1}{2\pi} \quad (0 \le \phi \le 2\pi)$$

Less simple: 'event generators' for a variety of reactions:

 $e^+e^- \rightarrow \mu^+ \mu^-$, hadrons, ... pp \rightarrow hadrons, D-Y, SUSY,...

e.g. PYTHIA, HERWIG, ISAJET...

Output = 'events', i.e., for each event we get a list of generated particles and their momentum vectors, types, etc.

×~		
Event listing (summary)	Δ simulated event	
I particle/jet KS KF orig p_x p_y p_z	E m	
1 !p+! 21 2212 0 0.000 0.000 7000.000 7000 2 !p+! 21 2212 0 0.000 0.000 7000.000 7000	0,000 0,938 0,000 0,938	
3 !9! 21 21 1 0.863 -0.323 1739.862 1733 4 !ubar! 21 -2 2 -0.621 -0.163 -777.415 777 5 !ubar! 21 -2 2 -0.621 -0.163 -777.415 777	9.862 0.000 7.415 0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X~	
7 !"9! 21 1000021 0 314,363 544,843 498,897 97 8 !"9! 21 1000021 0 -379,700 -476,000 525,686 980	9. 397 pi+ 0. 398 qamma	1 211 209 0.006 0.398 -308,296 308,297 (1 22 211 0.407 0.087-1695,458 1695,458 (
9 !"chi_1-! 21-1000024 7 130,058 112,247 129,860 26	3. 399 gamma	1 22 211 0,113 -0,029 -314,822 314,822
10 Isbar! 21 -3 7 259,400 187,468 83,100 330	0, 400 (pi0) 1, 401 (pi0)	11 111 212 0.021 0.122 -103.709 103.709 1
12 "chi 20! 21 1000023 8 -326.241 -80.971 113.712 38	5 402 (pi0)	11 111 212 0.267 -0.052 -144.673 144.674
13 lb! 21 5 8 -51,841 -294,077 389,853 49	1. 403 gamma	1 22 215 -1.581 2.473 3.306 4.421 (
14 [bbar] 21 -5 8 -0.597 -99.577 21.299 10	1, 404 gamma	
15 !"chi_10! 21 1000022 9 103,352 81,316 83,457 173	5, 405 p1- 5, 406 pi+	1 -211 216 0,007 0,738 4,015 4,085 0 1 211 216 -0.024 0.293 0.496 0.595 0
10 (S) 21 5 5 5 5,401 50,574 52,502 6 17 Iobart 21 -4 9 20 839 -7 250 -5 938 20	2 407 K+	1 211 210 0.024 0.233 0.400 0.303 0.30
18 1°chi 101 21 1000022 12 -136,266 -72,961 53,246 18	1 408 pi-	1 -211 218 1.183 -0.894 -0.176 1.500
19 !nu_mu! 21 14 12 -78,263 -24,757 21,719 84	4. 409 (pi0)	11 111 218 0,955 -0,459 -0,590 1,221 (
20 !nu_mubar! 21 -14 12 -107,801 16,901 38,226 11	5. 410 (pi0)	11 111 218 2,349 -1,105 -1,181 2,855 (
	== 411 (Kbar0)	11 -311 219 1.441 -0.247 -0.472 1.615
21 gamma 1 22 4 2,636 1,357 0,125	2. 412 pi-	1 -211 219 2.232 -0.400 -0.249 2.285 0
22 ("chi_1-) 11-1000024 9 129,643 112,440 129,820 26, 27 ("chi 20) 11 1000027 12 -722 770 -80 917 117 191 79	2, 413 NT 2, 414 (pill)	1 321 220 1,380 TV,832 TV,381 1,644 0 11 111 220 1 078 -0 265 0 175 1 172 0
23 (chi_20) 11 1000023 12 -322,330 -60,617 113,131 36, 24 "chi 10 1 1000022 15 97 944 77 819 80 917 160	9 415 (K S0)	11 310 222 1.841 0.111 0.894 2.109
25 "chi 10 1 1000022 18 -136,266 -72,961 53,246 18	1 416 K+	1 321 223 0.307 0.107 0.252 0.642
26 nu_mu 1 14 19 -78,263 -24,757 21,719 84	4. 417 pi-	1 -211 223 0,266 0,316 -0,201 0,480 (
27 nu_mubar 1 -14 20 -107.801 16.901 38.226 11	5, 418 nbar0	1 -2112 226 1.335 1.641 2.078 3.111
28 (Delta++) 11 2224 2 0,222 0,012-2734,287 2734	4, 419 (pi0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	420 p1+ 421 (pi0)	1 211 227 0,217 1,407 1,556 1,571 0 11 111 227 1 207 2 336 2 767 3 820 0
	$422 \text{ (p}) \sqrt{7}$	1 2112 228 3.475 5.324 5.702 8.592
0	423 pi-	1 -211 228 1.856 2.606 2.808 4.259
0	424 gamma	1 22 229 -0,012 0,247 0,421 0,489 (
0	425 gamma	1 22 229 0.025 0.034 0.009 0.043
	426 pi+	
	427 (p10) 429 pin	
PYTHIA WONTE Carlo	420 p1^{-1} 429 (pi0)	11 111 231 0,551 1,255 1,545 2,572 0
	430 gamma	1 22 232 -0.383 1.169 1.208 1.724
nn> gluino-gluino	_431 gamma	1 22 232 -0,201 0,070 0,060 0,221 (
pp 7 giuno-giuno	8	

G. Cowan / RHUL Physics

Statistical Data Analysis / lecture week 3

- D ×

0.140 0.000 0.000 0.135 0.135 0.000 0.140 0.140 0.140 0.140 0.140 0.135 0.135 0.498 0.140 0.135 0.498 0.140 0.135 0.498 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.494 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.140 0.135 0.000 0.140 0.000 0.140 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulates detector response:

multiple Coulomb scattering (generate scattering angle), particle decays (generate lifetime), ionization energy loss (generate ⊿), electromagnetic, hadronic showers, production of signals, electronics response, ...

Output = simulated raw data \rightarrow input to reconstruction software: track finding, fitting, etc.

Predict what you should see at 'detector level' given a certain hypothesis for 'generator level'. Compare with the real data.

Programming package: GEANT