INSS Statistics Project

The purpose of this exercise is to design a statistical test to discover a signal process such as dark matter by counting events in a detector. Suppose the detector can for each event measure a quantity x with $0 \le x \le 1$, for which probability density functions (pdfs) are for signal (s) and background (b),

$$f(x|s) = 3(1-x)^2, (1)$$

$$f(x|b) = 3x^2. (2)$$

- 1(a) Suppose for each event we test the hypothesis that it is background. We reject this hypothesis if the observed value of x is less than a specified cut value $x_{\rm cut}$. Find the value of $x_{\rm cut}$ such that the probability to reject the background hypothesis (i.e., accept as signal) if it is background is $\alpha = 0.05$. (The value α is the *size* or significance level of the test.)
- **1(b)** For the value of x_{cut} that you find, what is the probability to accept an event with $x < x_{\text{cut}}$ given that it is signal. (This is the *power* of the test with respect to the signal hypothesis or equivalently the signal efficiency.)
- 1(c) Suppose that the expected number of background events is $b_{\text{tot}} = 100$ and for a given signal model one expects $s_{\text{tot}} = 10$ signal events. Find the expected numbers of events s and b of signal and background events that will satisfy $x < x_{\text{cut}}$ using the value of $x_{\text{cut}} = 0.1$.
- 1(d) Assuming the numbers from 1(c), the prior probabilities for an event to be signal or background are

$$\pi_s = \frac{s_{\text{tot}}}{s_{\text{tot}} + b_{\text{tot}}} = 0.09 , \qquad (3)$$

$$\pi_b = \frac{b_{\text{tot}}}{s_{\text{tot}} + b_{\text{tot}}} = 0.91 . \tag{4}$$

Based on these values, what is the probability for an event to be signal given that one finds $x < x_{\text{cut}}$. (Recall Bayes' theorem or consult arXiv:1307.2487.)

1(e) Now suppose we do the experiment and observe n_{obs} events in the search region $x < x_{\text{cut}}$. We now want to test the hypothesis that s = 0 (the background-only hypothesis or "b"), against the alternative that signal is present with $s \neq 0$ (the "s + b" hypothesis).

The actual number of events n found in the experiment with $x < x_{\text{cut}}$ can be modeled as following a Poisson distribution with a mean value of s + b. That is, the probability to find n events is

$$P(n|s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)} . {5}$$

Suppose for a certain x_{cut} one has b = 0.5 and we find there $n_{\text{obs}} = 3$ events. The *p*-value of the background-only hypothesis is the probability, assuming s = 0, to find $n \ge n_{\text{obs}}$.

$$p = P(n \ge n_{\text{obs}}|s = 0, b) = \sum_{n=n_{\text{obs}}}^{\infty} \frac{b^n}{n!} e^{-b} = 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{b^n}{n!} e^{-b} .$$
 (6)

Find the p-value and from this find the significance with which one can reject the s=0 hypothesis, defined as

$$Z = \Phi^{-1}(1 - p) , (7)$$

where Φ is the standard cumulative Gaussian distribution and Φ^{-1} is its inverse (the standard Gaussian quantile). For more information see Sec. 10 of arXiv:1307.2487. You will need the cumulative chi-square distribution and the quantile of the Gaussian distribution, which from ROOT are available as 1 - TMath::Prob and TMath::NormQuantile.

1(f) The expected (median) significance assuming the s+b hypothesis of the test of the s=0 hypothesis is a measure of sensitivity and this is what one tries to maximize when designing an experiment. It can be approximated with a number of different formulas. For $s \ll b$ one can use $\text{med}[Z_b|s+b] = s/\sqrt{b}$. If $s \ll b$ does not hold, a better approximation is

$$\operatorname{med}[Z_b|s+b] = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)}.$$
 (8)

Using Eq. (8), find me median significance for $x_{\text{cut}} = 0.1$. Write a program that scans over values of x_{cut} between 0 and 1 and plots s, b and $\text{med}[Z_b|s+b]$ (using the different approximations) versus x_{cut} and thus find the value of x_{cut} that maximizes the median significance.

1(g) Now suppose that for each event we do not simply count the events having x in a certain region but we design a test that exploits each measured value in the entire range $0 \le x \le 1$. The data thus consist of the number n of events, which follows a Poisson distribution with mean of s + b, and the n values x_1, \ldots, x_n .

We can define a test statistic to test the background-only hypothesis that is a monotonic function of the likelihood ratio L_{s+b}/L_b ,

$$q = -2\sum_{i=1}^{n} \left[1 + \frac{s_{\text{tot}}}{b_{\text{tot}}} \frac{f(x_i|s)}{f(x_i|b)} \right]$$
 (9)

The motivation for this statistic is described further in Sec. 5.1 of arXiv:1307.2487.

From http://www.pp.rhul.ac.uk/~cowan/stat/mainz2018/project/mc/ download the program invisibleMC.cc and the makefile. Build and run the program. This will produce histograms of q under the s+b hypothesis, and also a histogram of q (called h_q_sb) and it will find the median q, med[q|s+b].

You should add code in analogy with this that generates data according to the background-only (s=0) hypothesis. Generate 10^7 experiments and count how many have q < med[q|s+b]. The fraction with q < med[q|s+b] is the median p-value of the background-only hypothesis. Find this and from it find the median significance Z (the sensitivity). Compare to the values you found from Eq. (8).