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MC Statistical Errors in ML Fits

This note presents an example of a binned maximum-likelihood (ML) fit where a data
histogram is modeled with a combination of signal and background components. The signal
component is specified by a parametric function, and the background contribution for each
bin is estimated by Monte Carlo (MC). Because the MC sample has a finite number of events,
the background estimates have statistical errors that should be incorporated into the fit. Here
this is done by modeling the numbers of MC events found in each bin as Poisson values whose
means are treated as additional nuisance parameters in the likelihood function.

Essentially the same problem is described by Barlow and Beeston [1], who treat the case
where the signal and background distribution shapes are both estimated from Monte Carlo.

Suppose an experiment results in a histogram of a continuous variable x with N bins
represented by a set of numbers n = (n1, . . . nN). We can model these as Poisson variables
with expectation values

E[ni] = νi . (1)

Suppose that the signal process describes the distribution of x with a pdf f(x;θ) where
θ is a set of parameters whose values we wish to estimate. In general the measurement of x
will be characterized by a response matrix that gives the probability to measure a value in
bin i given that the true value was in event j,

Rij = P (event measured in bin i | true value in bin j) . (2)

The efficiency is thus simply the probability to be measured in any bin given that the true
value was in bin j:

εj =
N
∑

i=1

Rij . (3)

For purposes of the example here we will assume that the response matrix is known.

The pdf f(x;θ) will predict the expected numbers of events in a histogram of the true

value of x. This is represented with a set of numbers µ = (µ1, . . . , µM ), whose values are not
necessarily integers. The true histogram need not have the same number of bins as that of
the observed value of x, although in the example here we take them to be equal, i.e., M = N .
The expected number of events in the histogram of the observed value of x must take into
account the smearing and limited efficiency represented by the response matrix R, and it
must also include contributions from background events. We can write the expectation value
of ni, νi, as

νi =
M
∑

j=1

Rijµj + βi . (4)
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Here βi is the expected number of background events in bin i, and the value of µj is related
to the pdf f(x;θ) by

µj = µtot

∫

bin,j
f(x;θ) dx . (5)

Here µtot is the expected total true number of events, which is treated together with θ as an
unknown parameter.

In this example we will suppose that we have an MC model for the background. By
subjecting the generated background events to the same detector simulation and selection
criteria as used for the real data, we find a number of events mi in the ith bin of x. Suppose
now that the effective luminosity for the background sample is related to that of the real data
(both assumed known) by

τ =
LMC

Ldata

. (6)

In principle we can make τ arbitrarily large by generating a larger MC sample, but in practice
its value is often of order unity and it is rarely greater than 10. The number of events mi

in bin i of the background histogram can be modeled as a Poisson variable with expectation
value

E[mi] = τβi . (7)

Strictly speaking we should model mi as following a binomial distribution with success prob-
ability pi out of NMC generated events, with E[mi] = piNMC. Here we can assume, however,
that the analysis has been designed to suppress background events so that all of the pi are
small for the observed bins. We can therefore accurately model the mi as Poisson variables.

Using a Poisson model for both the data ni and background MC values mi, we can write
the likelihood function as

L(µtot,θ,β) =
N
∏

i=1

νni

i

ni!
e−νi

N
∏

i=1

(τβi)
mi

mi!
e−τβi . (8)

The log-likelihood is thus

lnL(µtot,θ,β) =
N
∑

i=1

(ni ln νi − νi + mi ln(τβi) − τβi) + C , (9)

where C is a constant not depending on the parameters that can be dropped. The parameters
µtot and θ enter through the νi according to Eqs. (4) and (5), and the background values βi

enter directly through Eq. (4).

In general one maximizes the log-likelihood numerically. The difficulty one encounters here
is that all N of the background values βi all count as adjustable parameters. If one generalizes
to the case where there are several background components, then there will be N additional
parameters for each component. So a problem that initially had only a few parameters (the
components of θ), has become one with potentially many tens or even hundreds of parameters.

In fact this is not as difficult as it may seem, since one has an excellent first guess for
the value of βi, namely, mi/τ . And by using the method of Barlow and Beeston [1], the
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numerical maximization of lnL is feasible even for cases with a very large number of bins
times background components. In applying their method to this problem, one simply sets
the derivatives of lnL with respect to θ and β equal to zero to find the maximum, i.e.,

∂ lnL

∂θi

=
N
∑

j=1

(

nj

νj

− 1

)

∂νj

∂θi

= 0 , (10)

∂ lnL

∂µtot

=
N
∑

i=1

M
∑

j=1

(

ni

νi

− 1

)

Rij = 0 , (11)

∂ lnL

∂βi

=
ni

νi

− 1 +
mi

βi

− τ = 0 . (12)

In practice, Eqs. (10) and (11) are not needed as the maximization with respect to these
parameters is done numerically, e.g., with the program MINUIT. Solving Eq. (12) for βi gives

βi =
mi

τ + 1 − ni/νi

. (13)

The strategy for maximizing lnL is to begin with the estimate for βi that would be
obtained for νi = ni, namely,

βi =
mi

τ
, (14)

and with these values fixed, to maximize lnL with respect to the parameters θ and µtot.
Using Eq. (4) with the updated parameters, one finds new values for the νi. If these νi

represented the solution, then

δi =
mi

τ + 1 − ni/νi

− βi (15)

would be zero. One can then update the estimates of the βi using

βi → βi + ηδi , (16)

where η is a “learning rate” that can be adjusted to improve the convergence. Using η = 1
corresponds to taking Eq. (13) itself to give the updated values of βi. In the example shown
below, however, this led to an oscillating solution. Reasonable convergence was found after
several iterations with η = 0.2.

In principle one can iterate as described above until the solution converges with the desired
accuracy. At each iteration, the numerical maximization only involves the parameters θ and
µtot. In practice it was quicker to terminate the procedure after several iterations and then
to use this trial solution in a numerical maximization of all of the parameters: θ, µtot and
β. The optimal trade-off between iterative and full numerical maximization will depend in
general on the problem, and in particular on the number of components in θ and β.

The method above was applied to the Monte Carlo example shown in Fig. 1. The pdf f(x)
for the signal was a Gaussian with a mean of 5.0 and standard deviation of 1.0, truncated
between the limits 0 ≤ x ≤ 10. The parameter µtot representing the expected number of signal
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events was 500. The background followed an exponential with mean 2.0 truncated in the same
range. The expectation for the total number of background events was βtot =

∑

i βi = 1000.
The solid histogram in Fig. 1 represents the generated data. for the fit in Fig. 1, the value of
the parameter τ was taken to be equal to 1.0.
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Figure 1: Result of the maximum-
likelihood fit using τ = 1. The solid
histogram represents the data, the dot-
ted curve is the fitted signal, the lower
dotted histogram is the estimated back-
ground, and the upper dotted histogram
is the sum of fitted signal and background
(see text).

For the fit in Fig. 1 it was in fact possible to do the full numerical maximization of all
parameters, including background values, when starting from the initial estimates βi = mi/τ .
To ensure convergence it is important to place limits on the βi so that they remain non-
negative, and convergence is improved if they are given a small positive value (e.g., 0.1) in
the bins where mi = 0.

The iterative procedure described above was effective, however, and reasonable conver-
gence was found after 4 iterations using η = 0.2 for the learning rate. Taking η = 1.0 led
to an oscillating solution for bins with large numbers of entries. At the end of the iterative
phase, the full numerical maximization was carried out. Initial, intermediate and final fit
results for the background parameters are shown in Fig. 2.
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Figure 2: Result of the fit of the
background parameters β. The cir-
cles show the initial estimates βi =
mi/τ (with τ = 1), the squares in-
dicate the estimates after four iter-
ations with the procedure described
above, and the triangles are the fi-
nal estimates after a full numerical
maximization of ln L with respect
to all of the parameters.

Figures 3 show the results when taking (a) τ = 0.1 and (b) τ = 1.0. The former represents
a case where there are very large statistical uncertainties in the background estimates, and
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Figure 3: Fit results using (a) τ = 0.1 and (b) τ = 10.

this is reflected in the full result (upper dotted histogram) following very closely the data
histogram. That is, in the case τ = 0.1, most of the information about the background
is coming from the data histogram and not from the subsidiary background measurements.
This results in larger statistical uncertainties for the parameters of interest. These are shown
in Table 1 τ = 0.1, 1 and 10. In the case τ = 10, the subsidiary measurements m1, . . . ,mN

determine the background very accurately, and this is reflected in the smaller statistical errors
in the parameters of interest.

Table 1: Fitted values for the mean and width of the signal pdf and the parameter µtot for different
values of the scale parameter τ .

τ mean width µtot

0.1 5.275 ± 0.129 0.684 ± 0.147 399.1 ± 54.2
1.0 5.080 ± 0.082 0.979 ± 0.097 494.5 ± 33.8
10 5.147 ± 0.076 0.956 ± 0.079 469.2 ± 28.3
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