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Outline
Lecture 1: Probability, Bayes vs. Frequentist

Frequentist parameter estimation
Hypothesis tests

Lecture 2: p-values
Confidence limits
Systematic uncertainties
Bayesian parameter estimation

→ Lecture 3: Significance, sensitivity
Bayes factors
Models for anomalies
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I.  Discovery sensitivity for counting experiment with b known:

(a)

(b)  Profile likelihood 
ratio test & Asimov:

II.  Discovery sensitivity with uncertainty in b, σb:

(a)

(b)  Profile likelihood ratio test & Asimov:

Expected discovery significance for counting
experiment with background uncertainty
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Counting experiment with known background
Count a number of events n ~ Poisson(s+b), where

s = expected number of events from signal,

b = expected number of background events.

Usually convert to equivalent significance:

To test for discovery of signal compute p-value of s = 0 hypothesis,

where Φ is the standard Gaussian cumulative distribution, e.g.,
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7.

To characterize sensitivity to discovery, give expected (mean
or median) Z under assumption of a given s.
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s/√b for expected discovery significance
For large s + b, n → x ~ Gaussian(μ,σ) , μ = s + b, σ = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for significance
Poisson likelihood for parameter s is

So the likelihood ratio statistic for testing s = 0 is

To test for discovery use profile likelihood ratio:

For now 
no nuisance 
params.
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Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks’ theorem), 

To find median[Z|s], let n → s + b (i.e., the Asimov data set):

This reduces to s/√b for s << b.
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n ~ Poisson(s+b),  median significance,
assuming s, of the hypothesis s = 0

“Exact” values from MC,
jumps due to discrete data.

Asimov √q0,A good approx.
for broad range of s, b.

s/√b only good for s ≪ b.

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727
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Extending s/√b to case where b uncertain
The intuitive explanation of s/√b is that it compares the signal,
s, to the standard deviation of n assuming no signal, √b.

Now suppose the value of b is uncertain, characterized by a 
standard deviation σb.

A reasonable guess is to replace √b by the quadratic sum of
√b and σb, i.e.,

This has been used to optimize some analyses e.g. where
σb cannot be neglected.
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Profile likelihood with b uncertain

This is the well studied “on/off” problem:  Cranmer 2005;
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...

Measure two Poisson distributed values:

n ~ Poisson(s+b)         (primary or “search” measurement)

m ~ Poisson(τb) (control measurement, τ known)

The likelihood function is

Use this to construct profile likelihood ratio (b is nuisance
parameter):
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Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

and in particular to test for discovery (s = 0), 
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Asymptotic significance
Use profile likelihood ratio for q0, and then from this get discovery
significance using asymptotic approximation (Wilks’ theorem):

Essentially same as in:



Or use the variance of b = m/τ,  
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Asimov approximation for median significance
To get median discovery significance, replace n, m by their
expectation values assuming background-plus-signal model:

n → s + b
m → τb

,   to eliminate τ:ˆ
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Limiting cases

Expanding the Asimov formula in powers of s/b and
σb
2/b (= 1/τ) gives

So the “intuitive” formula can be justified as a limiting case
of the significance from the profile likelihood ratio test evaluated 
with the Asimov data set.
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Testing the formulae:  s = 5



G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3 16

Using sensitivity to optimize a cut
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Bayesian model selection
Fundamentally the probability of a hypothesis Hi in the Bayesian 
approach is given by its posterior probability given the data:  
P(Hi|x).

Finding this requires assignment of prior probabilities to all 
hypotheses that are considered.

We can give the posterior odds (ratio of probabilities) for any pair 
of hypotheses Hi and Hj (use Bayes’ theorem; factors of P(x)
cancel):

posterior odds prior oddsBayes factor

See:  Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.
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The Bayes factor

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of Hi over Hj. and can be used 
much like a p-value (or Z value).

The Jeffreys scale, analogous to the 5σ rule in Particle Physics:

B10 Evidence against H0
--------------------------------------------
1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

The Bayes factor Bij is the likelihood ratio of the two hypotheses:

= posterior odds if one takes
prior odds equal to one.
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Marginal likelihood (evidence)
If the model Hi contains internal parameters θi, then these must 
be characterized by a prior pdf πi(θi|Hi) and marginalized:

This is called the “marginal likelihood” or “evidence” of Hi.

It is independent of the overall prior probability of Hi

but it depends on the prior pdf for the model’s internal 
parameters θi :
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Bayes factor for models with internal parameters

The Bayes factor is thus the ratio of marginal likelihoods for 
the two models:

Simplifying the notation, the numerator and denominator are 
both of the form

For high-dimensional θ these integrals can be very difficult to 
compute (more on this later).
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Priors for Bayes factors
Prior pdfs for the marginal likelihoods used in Bayes factors
cannot be improper, i.e., they cannot be defined only up to an 
arbitrary normalization constant, in which case Bij would not be 
well defined.

Suppose we try to take a ”non-informative” prior to be constant
out to some large cut-off, in the hope that the Bayes factor will 
decouple from it:

In such cases we find that the Bayes factor remains sensitive to 
the cut-off even for a → ∞.  

So all priors used for Bayes factors must reflect a meaningful 
degrees of uncertainty about the parameters.
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Bayes factor for Poisson counting experiment

Suppose n ~ Poisson(s + b) with b known.  We want to compare

The likelihoods of H0 and H1 are
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Suppose the prior pdf for the parameter s in H1 is:

The posterior probability for s given n is, assuming H1,

Bayes factor for Poisson counting experiment (2)

(0 ≤ s ≤ smax)

(0 ≤ s ≤ smax)

γ = lower 
incomplete
gamma 
function
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In the limit smax → ∞ this goes to

where

is the lower incomplete gamma function.

Thus the posterior pdf for s given n under assumption of H1
decouples from smax in the limit smax → ∞, and hence we
can use this limiting case e.g. for finding an upper limit 
(credibility interval) for s.

Bayes factor for Poisson counting experiment (3)
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The hypothesis H0 has no internal parameters so its marginal 
likelihood is simply m0 = L(n| H0).  

The marginal likelihood of H1 is

Bayes factor for Poisson counting experiment (4)



26G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3

Bayes factor for Poisson counting experiment (5)
So the Bayes factor is

Example:  b = 2, n = 8

As smax increases the data 
start to  favour H1.

As smax increases further, 
the larger volume of H1’s 
parameter space penalizes 
it (Ockham’s razor).



27G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3

Numerical determination of Bayes factors
Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
Nested Sampling (MultiNest), ...
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”Errors on errors”

G. Cowan, Statistical Models with Uncertain Error Parameters, 
Eur. Phys. J. C (2019) 79:133, arXiv:1809.05778

The uncertainties on estimated systematic errors (“errors on 
errors”) can in general play an important role in many analyses, see:

It turns out that models that use
errors on errors have qualitatively
new, interesting, desirable features:

https://xkcd.com/2110/

Sensitivity to outliers reduced.

Confidence intervals sensitive to 
goodness of fit.

Effect on goodness of fit, p-values, 
significance.
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Prototype example:  
curve fitting, averages

Suppose independent 
yi ~ Gauss, i = 1,...,N, with

μ = (μ1,..., μM) are M parameters in the fit function φ(x;μ). 

If we take the σi as known, we have the usual log-likelihood

which leads to the Least Squares estimators for μ.
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Goodness of fit for Least Squares 
In the least-squares approach, the statistic

Likelihood of saturated model L(φ1,..., φN)

provides a measure of goodness of fit.  The p-value of the
composite hypothesis φ(xi;μ) is

If the yi ~ Gauss(φ(xi;μ), σi) then f(q) is chi-squared for N−M degrees
of freedom, independent of μ (Wilks).

Special case:   φ(xi;μ) = μ,   i.e., test if the yi have a common mean μ

→ q ~ chi-square(N−1)  →
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What if the σi are not known?
The LS approach assumes that the standard deviations σi of the 
measurements are known.

σi = statistical error, usually well estimated from sample size.

σi = systematic error:

related to stat. error of control measurement – well estimated

related to size of MC event sample – well estimated 

systematic uncertainty from modelling of experiment – could 
be poorly estimated

reflects uncertainty resulting from some mathematical 
approximation (theory error) – could be poorly estimated

In general, we should allow that the σi may not be exactly known.



32G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3

Gamma Variance Model 
G. Cowan, EPJC (2019) 79:133

If the σi
2 are uncertain, we can take 

them as adjustable parameters.

The estimated variances vi = si
2 are 

modeled as gamma distributed.

The likelihood becomes

Want

→
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Profile log-likelihood
One can profile over the σi

2 in close form.  

The log-profile-likelihood is

Quadratic terms replace by sum of logs.

Equivalent to replacing Gauss pdf for yi by Student’s t, νdof = 1/2ri
2

Simple program for Student’s t average:  stave.py
http://www.pp.rhul.ac.uk/~cowan/stat/stave/
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Application to the muon g − 2 anomaly
The recently measured muon g − 2 (ave. of 2006, 2021) disagrees 
with the Standard Model prediction with a significance of 4.2σ.

Muon g-2 Collab., PRL 126, 141801 (2021) 

Discrepancy significantly
reduced by 2021 lattice-
based prediction of Borsanyi
et al. (BMW).

Current goal is to investigate 
sensitivity of significance to 
error assumptions, so for 
now focus on the 4.2σ
problem.
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Muon g − 2 ingredients

the ingredients of the 4.2σ effect are:

Using

0.37 (stat.) ± 0.17 (sys.)

0.40 (Had. Vac. Pol.) ± 0.18 (Had. Light-by-Light)

(ave. of BNL 2006 and FNAL 2021)

(SM pred. by Muon g−2 theory initiative)
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Suppose σSM uncertain
Suppose measurement errors well known, but that the SM theory 
error σSM (estimated 0.43) could be uncertain.

This is the largest systematic and probably hardest to estimate.

Treat estimate vSM = (0.43)2 of variance σ2SM as gamma distributed, 
width from relative uncertainty parameter rSM.

Maximum-likelihood for mean from minimum of
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p-value/significance of common-mean  hypothesis

Significance (goodness of fit) from 

Because of non-quadratic term in Q(μ), distribution of q departs 
from chi-square(1) for increasing rSM.

Best to get distribution of q from Monte Carlo (and speed up with 
Bartlett correction – see EPJC (2019) 79:133).

For rSM > 0 distribution of q depends on σ2SM.  For MC use 
Maximum-Likelihood estimate (“profile construction”):

# of sigmas



38G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3

Significance of discrepancy versus rSM

Naive model:  use least squares but let σSM → (1 + rSM)σSM
Gamma variance model gives greater decrease in significance for 
rSM ≳ 0.2, e.g., 3.1σ for rSM = 0.3, 2.0σ for rSM = 0.6.
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Significance of discrepancy versus rSM

Establishing 4σ effect requires rSM ≲ 0.3 even if nominal exp. 
and SM uncertainties become half of present values.
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Discussion on muon g−2
Including uncertainties on estimates of uncertainties can have large 
effect on hypothesis test, esp. for high significance.

To establish e.g. a 5σ effect it is crucial to have both:
small uncertainties
accurate estimates of those uncertainties (~ 20% level)

This is ultimately because the tails of the Gaussian fall off so quickly.  

Gamma Variance Model ~ Student’s t likelihood with ν = 1/2r2
degrees of freedom → longer tails than Gaussian.

Ongoing discussion with Bogdan Malaescu of Muon g-2 Theory 
Initiative on the HVP uncertainty, see, e.g.,
B. Malaescu et al., https://indico.him.uni-
mainz.de/event/11/contributions/80/attachments/50/51/amuWorkshop_Correlations_Malaescu.pdf

M. Davier et al., Eur. Phys. J. C 80 (2020) 241 , arXiv:1908.00921
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Discussion on Gamma Variance Model
Other features of Gamma Variance Model (see EPJC (2019) 79:133
and the extra slides)

averages/fits become less sensitive to outliers; 
confidence intervals linked to goodness of fit;
straightforward to include multiple correlated error sources.

But... is part of the reason for requiring 5σ for discovery not to 
account for uncertainties in assigned errors?  Is there a trade-off  
between “errors on errors” and the requirement for discovery?

Best to have most realistic model.  If the estimated errors are 
indeed uncertain, this should be reflected in the model.

Bottom line – it is very difficult to establish convincing evidence 
for a new physics if relevant uncertainties are estimated in an ad 
hoc way.  We need robust procedures for their assignment.
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Finally
Three lectures only enough for a brief discussion of:

Parameter estimation
Hypothesis tests (→ path to Machine Learning)
Limits (confidence intervals/regions)
Systematics (nuisance parameters)
Bayesian methods, MCMC
A bit beyond... (“errors on errors”)

Final thought:  once the basic formalism is fixed, most of the 
work focuses on writing down the likelihood, e.g., P(x|θ), and 
including in it enough parameters to adequately describe the 
data (true for both Bayesian and frequentist approaches) so 
often best to invest most of your time with it.
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Extra Slides



44G. Cowan / RHUL Physics 4th KMI School, Nagoya / Lecture 3

Harmonic mean estimator
E.g., consider only one model and write Bayes theorem as:

π(θ) is normalized to unity so integrate both sides,

Therefore sample θ from the posterior via MCMC and estimate m
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation

Called the “worst Monte Carlo method ever”
https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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Improvements to harmonic mean estimator
The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  A variant (cf. Gelfand and Dey):

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f(θ):

Integrate over θ :

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ)

Note harmonic mean estimator is special case f(θ) = π(θ).
.
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Adaptive Harmonic Mean Integration
A. Caldwell et al., International Journal of Modern 
Physics A Vol. 35, No. 24 (2020) 2050142

Want to compute 

Define integral over subvolume Δ of Ω with volume VΔ

(Ω = support of f)

E.g.  f (λ) = L(λ) π(λ) = unnormalized target density; we can 
sample from this with MCMC.
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Adaptive Harmonic Mean Integration (2)

Use these to estimate I:

“The task of estimating our integral, therefore reduces to choosing one or several
subspaces ∆ — typically small regions around local modes of f(λ). The full space
Ω over which the integration ought to be performed can be large or even infinite,
while this does not affect the outcome of our integral estimate.”

A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Sample λ from f (λ) using MCMC, estimate 
r = IΔ/I with fraction of points found in Δ:

If f (λ) not small in Δ, then we can find IΔ from harmonic mean:
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Adaptive Harmonic Mean Integration (3)
Testing AHMI with multimodal multidimensional Cauchy pdf

A. Caldwell et al., IJMP A Vol. 35, No. 24 (2020) 2050142

Challenging pdf because of long tails.

Good results for up to 7 dimensions for 
MCMC sample size of 106.

Software:  Bayesian Analysis Toolkit
https://github.com/bat/BAT.jl
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Importance sampling
Need pdf f(θ) which we can evaluate at arbitrary θ and also
sample with MC.

The marginal likelihood can be written

Best convergence when f(θ) approximates shape of L(x|θ)π(θ).

Use for f(θ) e.g. multivariate Gaussian with mean and covariance
estimated from posterior.

Sample θ ~ f(θ), compute average of L(x|θ)π(θ)/f(θ).
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Nested sampling
J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006)

We want to compute 

Can add up portions of X (equivalently, θ) space in any order.  Use

Write inverse function as so that the desired result is

Elements of θ space are sorted
by decreasing likelihood.

X near 1 means low λ, all of
θ space included.
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Nested sampling (2)
J. Skilling, Bayesian Analysis, No. 4, pp. 833-860 (2006)

The evidence Z
is the area under
the curve of L(X).

Computational challenge is to sample θ space from prior subject 
to constraint L(θ) > λ.  Software:  MultiNest

Farhan Feroz, Mike Hobson, Mon. Not. Roy. Astron. Soc., 384, 2, 449-463 (2008); 
arXiv:0704.3704,
F. Feroz, M.P. Hobson, M. Bridges, Mon. Not. Roy. Astron. Soc. 398: 1601-1614,2009; 
arXiv:0809.3437 
F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, arXiv:1306.2144
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Full likelihood for gamma variance model

Treated like data: y1,...,yL (the primary measurements)
u1,...,uN (estimates of nuisance par.)
v1,...,vN (estimates of variances

of estimates of NP)

Adjustable parameters:    μ1,...,μM (parameters of interest)
θ1,...,θN (nuisance parameters)
σu,1,...,σu,N (sys. errors = std. dev. of

of NP estimates)
Fixed parameters:     r1,...,rN (rel. err. in estimate of σu,i)

αi = 1/4ri2
βi = αi/σui2,
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Sensitivity of average to outliers
Suppose we average 5 values, y = 8, 9, 10, 11, 12, all with
stat. and sys. errors of 1.0, and suppose negligible error on error
(here take r = 0.01 for all).

inner error bars
= σy,i

outer error bars 
= (σy,i2 + σu,i2)½
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Sensitivity of average to outliers (2)
Now suppose the measurement at 10 had come out at 20:

Estimate pulled up to 12.0, size of confidence interval ~unchanged
(would be exactly unchanged with r → 0).

“outlier”
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Average with all  r = 0.2
If we assign to each measurement r = 0.2, 

Estimate still at 10.00, size of interval moves 0.63 → 0.65
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Average with all  r = 0.2 with outlier
Same now with the outlier (middle measurement 10 → 20)

Estimate →10.75 (outlier pulls much less).

Half-size of interval → 0.78 (inflated because of bad g.o.f.).
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Naive approach to errors on errors
Naively one might think that the error on the error in the previous
example could be taken into account conservatively by inflating 
the systematic errors, i.e., 

But this gives 

without outlier (middle meas. 10)

with outlier (middle meas. 20)

So the sensitivity to the outlier is not reduced and the size of the
confidence interval is still independent of goodness of fit.
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Correlated uncertainties
The phrase “correlated uncertainties” usually means that a single
nuisance parameter affects the distribution (e.g., the mean) of more 
than one measurement.   

For example, consider measurements y, parameters of interest μ,
nuisance parameters θ with 

That is, the θi are defined here as contributing to a bias and
the (known) factors Rij determine how much θj affects yi.

As before suppose one has independent control measurements 
ui~ Gauss(θi, σui).
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Correlated uncertainties  (2)

The total bias of yi can be defined as 

which can be estimated with

These estimators are correlated having covariance

In this sense the present method treats “correlated uncertainties”,
i.e., the control measurements ui are independent, but nuisance
parameters affect multiple measurements, and thus bias estimates
are correlated.


