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Increasing the flexibility of a distribution to

allow for systematic uncertainty

1 Introduction

Consider fitting a distribution that is a mixture of several components, e.g., signal plus
several sources of background, and suppose that the shape and normalization of some of the
background components are taken from Monte Carlo in the form of MC templates. The
goal of the analysis could be to estimate the parameters of the signal component, e.g., its
amplitude and shape parameters.

Even if the MC templates have negligible statistical uncertainty, one would still like to
incorporate into the fit the systematic error due to an imperfect MC model. In this note
we discuss a method for doing this that involves modifying the MC templates in a way
that depends on new parameters that are included in the fit. The correlations between the
parameters result in general in increased statistical uncertainties in the original parameters
of interest.

In the fit using the extended model, penalty terms are included so that specified proper-
ties of the altered distribution (e.g., normalization, mean, width) do not depart excessively
from their nominal values relative to their assigned uncertainties. In this way, systematic
uncertainties in the MC template are effectively propagated into the statistical uncertainties
on the other parameters in the fit. Furthermore, the procedure significantly reduces potential
biases in the fitted parameters of interest.

Section 2 describes the method for altering a distribution by introducing additional pa-
rameters, and in Section 3 the method is applied to an example fit.

2 Altering a distribution

Suppose a continuous random variable y follows a given probability density function (pdf)
g(y). We would like to alter the shape of g(y) using a transformation containing a continuous
parameter that determines the magnitude of the change.

As a preliminary step, let us assume that the variable y has been scaled and translated
so that its minimum and maximum values are 0 and 1, i.e., one makes the transformation

y →
y − ymin

ymax − ymin
. (1)

After carrying out the procedure described below, one simply transforms back to the original
minimum and maximum values by inverting Eq. (1).

Now transform the variable y according to a specified function x(y) which has a single-
valued inverse y(x). Then x will follow a new pdf f(x), which can be found from
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Figure 1: Plots of (a) the transformation function x(y) = ϕ1(y;α) and (b) the effect of applying the
transformation to a Gaussian pdf g(y) for several values of the parameter α.
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By an appropriate choice of the transformation x(y), we can, for example, shift the mean or
width of the new pdf f(x) relative to that of the original g(y).

A simple choice for such a transformation that can shift the mean of a distribution is

x(y) ≡ ϕ1(y;α) =







y

1+α(1−y) α ≥ 0 ,

(1−α)y
1−αy

α < 0 .
(3)

If the parameter α is zero, the transformed variable is identical to the original; otherwise, the
primary effect is to shift the pdf to the right or left. The function x(y) = ϕ1(y;α) is shown
in Fig. 1(a) for several values of α.

The inverse transformation y(x) is

y(x) ≡ ψ1(x;α) = ϕ1(x;−α) =







(1+α)x
1+αx

α ≥ 0 ,

x

1−α(1−x) α < 0 .
(4)

To find the pdf f(x) we need the derivative

dy

dx
= ψ′

1(x;α) =







1+α

(1+αx)2 α ≥ 0 ,

1−α

(1−α(1−x))2
α < 0 .

(5)

Applying the transformation to find f(x) gives the pdfs shown in Fig. 1(b) for several values
of the parameter α.

The procedure described above can easily be generalized to allow not only for a shift
in the mean of a distribution, but also to stretch its width or introduce more complicated
distortions. Suppose one takes for the mapping x(y) the function
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Figure 2: Plots of (a) the transformation function x(y) = ϕ2(y;α) and (b) the effect of applying the
transformation to a Gaussian pdf g(y) for several values of the parameter α.

x(y;α) ≡ ϕ2(y;α) =







1

2
ϕ1(2y;α) y ≤ 1

2
,

1

2
(1 + ϕ1(2y − 1;−α)) y > 1

2
,

(6)

which has the inverse

y(x;α) ≡ ψ2(x;α) = ϕ2(x;−α) =







1

2
ψ1(2x;α) x ≤ 1

2
,

1

2
(1 + ψ1(2x− 1;−α)) x > 1

2
.

(7)

The function x(y) = ϕ2(y;α) is shown in Fig. 2(a) and the effect of the transformation on a
Gaussian distribution is shown in Fig. 2(b) for several values of α.

The transformations can be nested, so that one modifies both the original distribution’s
mean and width. Suppose, for example, that the original variable is z, which follows a pdf
h(z). This can be transformed to y using

y(z) = ϕ1(z;α1) . (8)

Then y can be transformed to x using

x(y) = ϕ2(y;α2) . (9)

The distribution of x is therefore

f(x) = h(z(y(x)))

∣

∣

∣

∣

dz

dy

dy

dx

∣

∣

∣

∣

= h(z(y(x))ψ′

1(y;α1)ψ
′

2(x;α2) . (10)

where

z(y(x)) = ψ1(ψ2(x;α2);α1) (11)
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and

ψ′

2(x;α) =







ψ′

1(2x;α) x ≤ 1

2
,

ψ′

1(2x− 1;−α) x > 1

2
.

(12)

It is straightforward to generalize the mapping x(y) to include an arbitrary number of alter-
nating elements each defined by ϕ1(y;α).

In practice, the original distribution may be represented by a histogram. To apply the
transformation described above however, one requires a continuous representation of the
distribution. That is, even if one only needs the value of the transformed distribution for
the variable x at the centre of a bin, the value z(y(x)) will not in general be at the centre.
Furthermore one would like the changes introduced in the distribution to be continuous
functions of the parameters. To circumvent the problems with binning, one can simply
replace the histogram by a convenient continuous approximation such as a spline. One must
ensure, however, that the distribution does not go negative, e.g., by assigning a value of
zero if the spline is negative. In other cases it may be possible to first fit the histogram
to a parametric distribution that by construction cannot go negative and to use this as the
untransformed distribution.

3 An example fit

As an example of this procedure is shown in Figs. 3 and 4. The model consists of a Gaussian
signal peak, a polynomial background, and a peaking background whose form is taken from
an MC simulation, which here was also a Gaussian. The Gaussian signal was generated with a
mean and standard deviation of µs = 0.5, σs = 0.1, and the peaking background is generated
with µb = 0.5, σb = 0.05.

Suppose the goal of the analysis is to estimate the mean and width of the signal. In
Fig. 3(a) this is done using a fitting model that is identical to the one used to generate the
data. As expected, the fitted values of µs and σs are close to the input values,

µ̂s = 0.50025 ± 0.00232 , (13)

σ̂s = 0.10578 ± 0.00325 , (14)

and one finds χ2 = 30.6 with 44 degrees of freedom.

In Fig. 3(b), however, the MC template for the peaking background was systematically
altered by using µb = 0.45, σb = 0.045, compared to the values of 0.5 and 0.05 used to
generate the data. Because of the incorrect modeling of the peaking background, the fitted
values of µs and σs for the signal peak come out to be significantly different from the true
values, namely,

µ̂s = 0.51676 ± 0.00226 , (15)

σ̂s = 0.08933 ± 0.00308 . (16)

Furthermore one has a poor goodness-of-fit, with χ2 = 91.2 for 44 degrees of freedom.
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Figure 3: Plots of example fits using (a) the unaltered peaking background component (lower his-
togram) and (b) the altered version (see text).

Suppose now that one regards the peak position and width of the MC template to have
given systematic uncertainties, e.g., σµb

= 0.05 and σσb
= 0.005. That is, in the altered MC

template, the mean and width are both off by one standard deviation. To incorporate this
error into the fit, one can include in the chi-squared the terms

(

µb(α) − µb(0)

σµb

)2

+

(

σb(α) − σb(0)

σσb

)2

, (17)

where µb(α) and σb(α) are the mean and standard deviation of the MC template after
application of the transformation with parameters α = (α1, α2) and µb(0) and σb(0) are
the original values, i.e., those corresponding to α1 = α2 = 0. The systematic uncertainties
assigned to these quantities are σµb

and σσb
, respectively. The fit results are shown in Fig. 4.

When using the systematically shifted MC template but including the adjustable α1 and
α2, the fitted values of the mean and standard deviation of the signal are

µ̂s = 0.50014 ± 0.00290 , (18)

σ̂s = 0.10582 ± 0.00347 , (19)

Now the goodness-of-fit is again very good, with χ2 = 32.1 for 44 degrees of freedom. Note
that when including the two additional parameters, α1 and α2, one effectively treats the
nominal mean and standard deviation of the peaking background, µb(0) and σb(0), as mea-
surements, and therefore the number of degrees of freedom does not change.

By including α1 and α2, the fit errors have increased to reflect the uncertainty in the MC
template and the bias in the fitted values is greatly reduced, as can be seen by comparing the
results from the original fit based on the correct model, (13) and (14), to the fitted values (18)
and (19) obtained using the biased MC template but including the adjustable parameters α1

and α2.
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Figure 4: Plots of example fits allowing for variation of the mean and width of the peaking component
through the parameters α1 and α2 using (a) a systematically altered peaking background component
(lower histogram) and (b) an undistorted peaking background.

One obtains very similar results when one includes the variable α1 and α2 but without
any systematic distortion of the MC template, namely,

µ̂s = 0.49981 ± 0.00292 , (20)

σ̂s = 0.10498 ± 0.00354 , (21)

which has χ2 = 30.0 for 44 degrees of freedom.

One can regard the quadratic difference between the statistical errors with and without the
additional adjustable parameters as the as the contribution from the systematic uncertainty
in the MC template. Here this is

σµ̂,sys =
√

0.002902 − 0.002262 = 0.00182 ,

σσ̂,sys =
√

0.003472 − 0.003082 = 0.00160 .

Formally, however, this part of the error has been converted to part of the statistical error of
the fit, and it is probably most appropriate to report it as such. It is interesting to note that
these systematic errors are in fact much smaller than the change one would find in the fitted
values when using the correct and shifted MC templates. These are

∆µ̂sys = |0.50025 − 0.51676| = 0.01651 ,

∆σ̂sys = |0.10578 − 0.08933| = 0.01645 .

This is not to say that one or the other way of estimating the systematic uncertainty is
incorrect. Rather, in the case where one introduces additional adjustable parameters, the
systematic error is in fact reduced, as can be seen by the greatly reduced bias in the fitted
signal parameters.
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