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Recommendations for presentation of error bars

1 Introduction

This note summarizes recommendations on how to present error bars on plots. It follows
discussions and presentations at the ATLAS Statistics Forum Meeting on 5 October, 2010
[1, 4]. The Statistics Forum regards this as partially a question of statistical practice, but
also a question of presentation and thus to some extent a matter of convention and taste.
One must also recognize that in different analyses different types of approximate methods
for summarizing the a measurement and related uncertainties may be applicable, so that a
single recipe will not be appropriate in all cases.

Depending on the needs of the analysis and what one wants to communicate, options for
error bars are:

1. Estimate of standard deviation of the measurement, e.g., square root of measured num-
ber for Poisson data.

2. No error bars.

3. 68.3% central confidence interval.

4. 68.3% Bayesian credible interval.

For whichever option is chosen, unless it is not relevant to the discussion (rare) or absolutely
clear from context, one should state what procedure was used, e.g., in the figure caption. The
rationale behind these options and their advantages and disadvantages are discussed below.

Related discussions can be found in the Statistics Forum Note on error analysis for effi-
ciency [2] and in the paper by Casadei [3].

2 Estimate of standard deviation (the “
√
n method”)

Probably the most common recipe for calculating the error bar for a certain number of events,
n, is to take the square root of n. For concreteness, suppose we measure an integer value n
that is modelled as following a Poisson distribution with some (unknown) mean value ν. One
can show that the Maximum likelihood estimator for ν is ν̂ = n. The estimator is a random
quantity characterized by a standard deviation

σ[ν̂] = σ[n] =
√
ν , (1)

which itself depends on the true (and a priori unknown) ν. We can construct an estimator
of the standard deviation of the estimator ν by evaluating Eq. (1) with ν = ν̂,
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σ̂[ν̂] =
√
ν̂ =

√
n , (2)

and use this as the error bar. The procedure is simple and it is also easy to communicate
what was done, e.g., in a histogram: “error bars are given by the square root of the number
of entries in each bin”. But it can be misleading in several important cases, such as 0 ± 0
or 1 ± 1. This is not to say that σ̂[ν̂] =

√
n is “wrong”, for these cases, any more than it is

wrong when any estimated value does not exactly equal the true value. Rather, the estimated
standard deviation in such cases does not meaningfully encapsulate our knowledge about the
expected statistical fluctuations implied by the observation. In particular n = 0 clearly gives
an underestimate of the true standard deviation, assuming that there is nonzero probability
to see n 6= 0.

A further drawback of the
√
n recipe is that it can provide a misleading impression of

the level of compatibility between a certain hypothesis for the mean value ν and the data n.
Suppose one observes n = 1 and thus plots 1 ± 1. This appears to be perfectly compatible
with ν = 0, but of course this hypothesis is ruled out by observing any nonzero n. The
plotted n = 1 also appears compatible with, say, the hypothesis ν = 10−8. But the p-value
of this hypothesis would be

p = P (n ≥ 1; ν) = 1− P (0; ν) = 1− e−ν ≈ ν = 10−8 . (3)

That is, the hypothesis of a very small mean value is also very incompatible with the data,
although it is contained with in the presented interval of 1 ± 1. For these reasons, the

√
n

method is not recommended for cases of small or zero n, unless for example these represent,
tail values that are not relevant to the message one wishes to communicate.

In cases where the observed value is not modelled as a Poisson variable, one can follow
the same basic procedure using whatever probability model is assumed. For example, when
estimating an efficiency, one may find m events passing cuts out of N total, and model m as
a binomially distributed variable with an acceptance probability per event ε (the efficiency).
The Maximum Likelihood estimator for ε is

ε̂ =
m

N
, (4)

and the variance of a binomially distributed variable m is V [m] = Nε(1− ε). As above if we
estimate σ[m] =

√

V [m] by substituting the estimator for ε one finds the estimator of the
standard deviation of ε̂,

σ̂[ε̂] =

√

ε̂(1− ε̂)

N
=

1

N

√

m

(

1− m

N

)

(5)

This expression suffers not only from the same pathologies for m = 0 or m = 1 as seen
above for a Poisson distributed value, but has similar behaviour for m = N or m = N − 1.
For this reason, Eq. (5) is not recommended for error bars on estimated efficiencies or other
quantities related to binomially distributed data if the regions ε ≈ 0 or ε ≈ 1 are relevant to
the discussion. Instead, one should consider either frequentist confidence intervals or Bayesian
credible intervals as described in Sections 4 and 5, respectively.
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3 No error bars

The observed data are “exact”. That is, if one finds n = 3 events, then this observation is
definitely 3, not 2 or 4. Thus it is not necessary or even desirable to plot the observation
together with an error bar. Consider, for example, the histogram in Fig. 1.
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Figure 1: Observed and expected
histograms of a variable x (see
text).

Suppose the number of events observed in each bin is modelled as a Poisson variable
with a mean given by the dashed curve. One could judge whether the peak is significant
by computing a p-value that gives the probability, assuming the mean values of the dashed
curve, to find a peak as significant or more so relative to the one seen. Error bars play no
role in this analysis and could in fact be misleading, for the reasons discussed in Sec. 2.

What the reader can do “by eye” in viewing a plot such as Fig. 1 is to mentally compute
the square root of the value of the dashed line to obtain the standard deviation of the Poisson
value for that bin, and see how far the observed data is from the hypothesis as a multiple
of this standard deviation. This is not as informative as the p-value but still gives some
meaningful measure of the level of compatibility between the data and hypothesis. One
might therefore consider plotting the hypothesized mean together with plus-or-minus one
square root of the hypothesized value, but this becomes awkward, especially if one wants to
display more than one hypothesis on the same plot. It is also not common practice, so this
latter procedure is therefore not recommended.

4 Confidence interval

Frequentist confidence intervals provide a means to display error bars that do not suffer from
the pathologies seen with the

√
n method but which are (usually) easy to compute and which

coincide with the
√
n recipe when n is sufficiently large.

If n follows a Poisson distribution with mean ν, the lower confidence limit at confidence
level 1− α and upper limit at level 1− β are given by (see [5] Eq. (33.59)),

νlo = 1

2
F−1
χ2 (α; 2n) , (6)

νup = 1

2
F−1
χ2 (1− β; 2(n+ 1)) , (7)
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where F−1
χ2 is the quantile of the chi-square distribution for the indicated number of degrees

of freedom. These can be computed using the routine TMath::ChisquareQuantile in the
ROOT library. For error bars we recommend 68.3% central confidence intervals. Here central
means that the upper and lower tail probabilities, α and β, are equal and 1−α− β = 0.683,
i.e., α = β = 0.159 (more precisely, 0.158655). The displayed measurement and error bars

are thus ν̂
+(νup−ν̂)
−(ν̂−νlo)

.

For an efficiency ε estimated using binomially distributed data, the lower and upper
confidence limits are given (see [5] Eq. (33.60)),

εlo =
mF−1

F [α; 2m, 2(N −m+ 1)]

N −m+ 1 + mF−1
F [α; 2m, 2(N −m+ 1)]

, (8)

εup =
(m+ 1)F−1

F [1− β; 2(m+ 1), 2(N −m)]

(N −m) + (m+ 1)F−1
F [1− β; 2(m+ 1), 2(N −m)]

. (9)

where F−1
F is the quantile of the F distribution (also called the Fisher–Snedecor distribution;

see [6]). The function F−1
F can be obtained using ROOT::Math::fdistribution_quantile

from the ROOT’s MathCore library [7].

. As before, one would generally choose the 68.3% central confidence intervals, i.e.,

α = β = 0.159 and display the point as ε̂
+(εup−ε̂)
−(ε̂−εlo)

.

Confidence intervals have the advantage that they only extend over the physically defined
range of the parameter and show meaningful intervals also for n = 0 (Poisson) and also m = 0
and m = N (binomial). They are in general asymmetric about the measured value, but they
approach the ±σ standard error bars if in limiting cases (e.g., Poisson for large n; binomial
for large m and N −m).

5 Bayesian credible interval

Instead of frequentist confidence intervals one can also base the error bars on Bayesian credible
intervals. For the case of binomial data these are discussed at length in [3] and also in [2].

In Bayesian statistics one computes a posterior probability density for the parameter of
interest. For example, for Poisson distributed n with mean ν, one uses Bayes’ theorem to
find the posterior pdf p(ν|n), which characterizes that ν takes on different values in the light
of the observed n,

p(ν|n) = L(n|ν)π(ν)
∫

L(n|ν)π(ν) dν . (10)

Here L(n|ν) is the Poisson likelihood function and π(ν) is the prior pdf, which characterizes
the uncertainty in the parameter before making the measurement. Selecting this prior is one
of the nontrivial aspects of a Bayesian analysis, and for present purposes we will assume this
has been considered and a choice made. Often a uniform prior for ν ≥ 0 is used (advantages
and drawbacks of the uniform prior are discussed, e.g., in [5]).

In the case of, say, an efficiency based on binomially distributed data, one would have a
corresponding posterior distribution
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p(ε|n) = L(m|ε,N)π(ε)
∫

L(n|ε)π(ε) dε . (11)

The prior π(ε) could, for example, be be taken as uniform in [0, 1]; the Jeffreys prior π(ε) ∝
1/

√

ε(1− ε) is also often used. A detailed discussion is given in [3].

Once one has obtained the posterior distribution p(θ) for a parameter θ(e.g., Poisson ν
or binomial ε), the upper and lower bounds can be found by requiring

α =

∫ θlo

−∞

p(θ) dθ (12)

β =

∫

∞

θup

p(θ) dθ . (13)

As with the case of frequentist confidence intervals, one would usually take α = β = 0.159,
so that the resulting interval [θlo, θup] has a probability content of 68.3%.

6 Discussion

Finally, it is interesting to see the practice is for other experiments. The CDF Statistics
Committee has also addressed the question of error bars for Poisson data, and the following
is extracted from their (public) report [8]:

The Statistics Committee had been asked by the Spokespersons to make a rec-
ommendation about the magnitude of error bars to be shown on histograms in
CDF publications. This produced very animated discussions in the Statistics
Committee . . .

. . . it was decided that it is simplest to keep to the traditional practice of using
sqrt(n) for the error bars, where n is the observed number of events.

Thus for CDF the overriding argument was the ease with which one could communicate
what the error bar meant, even if the message in certain cases (e.g., 0± 0, 1± 1) is not very
informative or even misleading.
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