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Marginal vs. Profile Likelihood for systematic uncertainties

This note describes treatment of systematic uncertainties using a Bayesian averaged (i.e.,
marginal) likelihood as opposed to the profile likelihood. The problem of uncertain back-
ground in a Poisson counting experiment is addressed in Sec. 1 for a Gamma prior, which
corresponds to having a Poisson measurement to constrain the background. In Sec. 2 the
same problem is treated using a log-normal prior, which corresponds to having a control
measurement that also follows a log-normal distribution.

1 Uncertainty on background in Poisson mean

As a simple example, suppose one has an experiment that counts n events, modeled as
following a Poisson distribution with mean µs + b, where s is the nominal signal rate, b is
the expected background rate, and µ is a strength parameter. In this example we regard s
as known. The probability for n is therefore

P (n|µ, b) =
(µs + b)n

n!
e−(µs+b) . (1)

Suppose b is not known exactly. There are now two basic approaches to the problem,
depending on how we choose to quantify this uncertainty. The approach of Bayesian model
averaging (marginalization) is described in Sec. 1.1, and the method of profiling is shown in
Sec. 1.2.

1.1 Marginalization approach for Poisson mean with gamma prior

In the marginalization approach to the problem, one would say that the uncertainty in b is
characterized by some Bayesian prior pdf π(b). The model for n is taken as the Bayesian
model average,

Pm(n|µ) =

∫

P (n|µ, b)π(b) db , (2)

i.e., the nuisance parameter is eliminated by marginalization, hence the subscript m. The
probability (2) is thus no longer Poisson but rather some other (still discrete) law, which will
in general be broader than Poisson. Equation (2) could be used to construct a test statistic,
e.g.,

qm = −2 ln
Pm(n|1)
Pm(n|0) . (3)

The sampling distribution of this statistic is found by generating n according to Eq. (2), and
using this to evaluate qm. In practice, the integral in (2) would be carried out by sampling b
from π(b), and then using that b in Eq. (1) to generate n.
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A difficulty with the statistic qm as defined in Eq. (3) is that one must be able to evaluate
the functions Pm(n|1) and Pm(n|0) for arbitrary n. But after marginalization, this is no
longer a simple Poisson distribution, but rather more complicated. Thus one would first have
to determine Pm(n|1) and Pm(n|0), e.g., using Monte Carlo, and store the result so that it
could be used to evaluate qm.

Alternatively, one could generate the n according to the marginalized model, but then
use it to evaluate a test statistic defined using the original Poisson probability from Eq. (1)
for n, i.e.,

q′m = −2 ln
P (n|1, b)
P (n|0, b) = −2

(

n ln

(

s + b

b

)

− s

)

. (4)

For this one requires an assumed value of b, e.g., the mean of π(b). For the present study
this is the approach followed.

It is important to note that although the sampling distribution of n is found using a
Bayesian argument, the subsequent analysis follows a frequentist approach. Alternatively
one could assume a prior for µ (or more generally, a joint prior for µ and b), and use this to
find the Bayesian posterior pdf for µ. This ‘fully Bayesian’ approach is not considered here.

1.2 Profile approach for Poisson mean with Poisson constraint

In the profile-likelihood approach, one treats b as a free (nuisance) parameter. If one has no
other measurement or constraint on b, then inference about µ is impossible. Any value of µ
will fit the data if one is allowed to adjust b arbitrarily. So to proceed we must have some
measurement that constrains b. Suppose this is a control measurement of a number of events
m, assumed to follow a Poisson distribution with mean τb, where we take τ to be a known
scale factor, i.e.,

P (m|b) =
(τb)m

m!
e−τb . (5)

The full experimental outcome is now regarded as consisting of n (the main measurement)
and m (the control measurement). Assuming n and m are independent, the full model is
simply the product of the two Poisson probabilities:

P (n,m|µ, b) =
(µs + b)n

n!
e−(µs+b) (τb)m

m!
e−τb . (6)

One can construct a test statistic analogous to the one used above in the Bayesian ap-
proach by using the ratio of profile likelihoods, i.e.,

qp = −2 ln
P (n,m|1, ˆ̂b(1))
P (n,m|0, ˆ̂b(0))

. (7)

Here the arguments 1 and 0 in the numerator and denominator refer to the hypothesized

values of µ, and
ˆ̂
b(µ) is the value of b that maximizes the likelihood (6) for the given value

of µ.
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1.3 Comparison of marginalization and profile approaches

One may ask whether there is some prior π(b) such that the distribution of the statistics based
on marginalization and profiling, qm and qp will lead to identical tests. Here one must keep in
mind that to generate a value of qm, one samples n according to Eq. (1), which is equivalent
to generating b from π(b), and using this b to sample n from the Poisson distribution (1). In
contrast, to generate qp one fixes b to some point (this could be related to the mean of π(b)),
and then one generates n and m according to Eqs. (1) and (5), respectively. Thus the value of
qp is a function of two independent, discrete random variables, whereas qm only depends on
the value n, so effects due to discreteness do not enter in the same way for the two statistics.

But beyond issues related to discreteness, one can find what the Poisson measurement
of m would imply about b, and use this information to determine a prior π(b). Suppose the
original prior for b, i.e., before even the control measurement is carried out, is π0(b). This
may be called the ‘ur-prior’, using the German prefix meaning original or primordial. Then
Bayes’ theorem gives the posterior probability

p(b|m) ∝ P (m|b)π0(b) . (8)

If we take the ur-prior to be constant, then the probability for b becomes

p(b|m) ∝ (τb)−m

m!
e−τb , (9)

which has the general form of a gamma distribution for b. Normalizing this to unit area over
0 ≤ b < ∞ gives

p(b|m) =
τm+1bme−τb

m!
, (10)

which has a mean of (m + 1)/τ and variance of (m + 1)/τ2.

One may now say that this information about b, i.e., after measurement of m but before
the measurement of n, was what led to the prior π(b) used in the approach of Sec. 1.1 to find
the marginal likelihood. That is, this prior is the same as the pdf of b given m,

π(b) = p(b|m) =
τm+1bme−τb

m!
. (11)

It is important to note that the correspondence between a Poisson distributed measurement
m and the gamma prior depends on taking a constant for the ur-prior π0(b).

As an example, consider s = 10, τ = 1 and a Poisson distributed control measurement
for the background that yielded m = 20 events. The Maximum Likelihood estimator (MLE)
for b is thus b̂ = m/τ = 20. For computing the distribution of the statistic qp, in this study,
therefore, the parameter values s = 10, b = 20 were used.

In a real analysis, however, one would have actual data values, n and m, and on the basis

of these one can compute the conditional MLE
ˆ̂

b(µ), i.e., the value of b that maximizes the

likelihood for the given value of µ. One would then use
ˆ̂

b(0) to generate the data needed to

determine the distribution f(qp|0), and
ˆ̂

b(1) to compute f(qp|1).
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For marginalization, the corresponding prior should be a gamma pdf with mean E[b] =
(m + 1)/τ = 21 and standard deviation σ =

√
m + 1/τ =

√
21 = 4.58. Figure 1 shows

the resulting distributions for the statistics q′m and qp. The different effect of discreteness is
clearly visible; beyond that their discriminating power is similar.
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Figure 1: Distributions of the test statistics (a) q′m and (b) qp assuming both the background-only and
signal-plus-background hypotheses. An indicative observed value of the statistics shows how one would
obtain p-values for the two hypotheses. For qp, the solid curves show the asymptotic distributions
from Ref. [1].

2 Uncertainty modeled with a log-normal pdf

In this section, the uncertainty on the mean number of background events, b, is modeled with
a log-normal prior (see, e.g., [2]), i.e.,

πb(b) =
1√
2πσ

1

b
exp

[

−(ln(b/b0))
2

2σ2

]

. (12)

This corresponds to having a Gaussian distribution,

πβ(β) =
1√
2πσ

exp

[

−(β − β0)
2

2σ2

]

, (13)

for

β = ln b , (14)

with mean value β0 = ln b0 and standard deviation σ, which in the following we write as σβ.

Following Ref. [2], we define κ = eσβ and identify σrel = κ − 1 = eσβ − 1 as the relative
uncertainty on b. That is, a 20% background uncertainty corresponds to taking σrel = 0.2
and then using

σβ = ln(1 + σrel) . (15)

The Bayesian-averaged model can be found in the same manner as was done in Sec. 1.1
using the gamma prior. That is, the probability for n given µ is still given by Eq. (2), but
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now using the log-normal prior (12). In practice one generates values of n by sampling β
from the Gaussian distribution (13), then using b = eβ as the expected background in the
Poisson distribution (1) to generate n.

As pointed out at the ATLAS/CMS Higgs Combination Meeting (5.5.11), use of the log-
normal prior corresponds to having a measurement bmeas of b with a log-normal sampling
distribution, or equivalently to having a Gaussian measurement βmeas of the parameter β =
ln b, i.e.,

p(βmeas|β) =
1√

2πσβ

e−(βmeas−β)/2σ2

β . (16)

Given a value of βmeas, one would find the posterior pdf for β,

p(β|βmeas) ∝ p(βmeas|β)π0,β(β) , (17)

where π0,β(β) is the Bayesian ur-prior of β. If we take this as a constant, then this implies
an ur-prior for b of

π0,b(b) = π0,β(β)

∣

∣

∣

∣

dβ

db

∣

∣

∣

∣

∝ 1

b
. (18)

Assuming a constant π0,β(β), Eq. (17) for the posterior probability of β is a Gaussian
distribution centred about βmeas. In the Bayesian approach one would then use this as the
prior for β, which is based in the control measurement βmeas and the constant ur-prior. Thus
having a log-normal distributed measurement for b in the profile approach corresponds to
using a log-normal prior for the parameter b in the marginalization approach.

To implement such a constraint in the profile approach, one can assume that the data
consist of the main measurement n, which follows a Poisson distribution with mean µs + eβ,
and a control measurement βmeas, which is Gaussian distributed about β with standard
deviation σβ .

Distributions of the test statistics q′m and qp assuming the background-only (µ = 0) and
signal-plus-background (µ = 1) hypotheses are shown in Fig. 2. The parameters used were
s = 10, b = 20 and a relative uncertainty in b of σrel = 0.2.

Distributions of the test statistics q0 and q1 as defined in Ref. [1] are shown with the
asymptotic (large-sample) distributions in Fig. 3. These are based on the profile likelihood
ratio,

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
. (19)

where θ represents any nuisance parameters (in the present problem, b), and as before a single
hat indicates the MLE and a double hat indicates the conditional MLE for the specified value
of µ.

The statistic q0 would be used to test the background-only (µ = 0) hypothesis against an
alternative with µ > 0. It is defined as
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Figure 2: Distributions of the test statistics (a) q′m and (b) qp assuming both the background-only
and signal-plus-background hypotheses using the log-normal of Sec. 2. For qp, the solid curves show
the asymptotic distributions from Ref. [1].
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Figure 3: Distributions of the test statistics (a) q0 and (b) q1 assuming both the background-only
and signal-plus-background hypotheses using the log-normal of Sec. 2. The solid curves show the
asymptotic distributions from Ref. [1].
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q0 =







−2 ln λ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(20)

where λ(0) is the profile likelihood ratio for µ = 0. For purposes of setting an upper limit,
one tests values of µ against the alternative consisting of lower values. For this test we use
the statistic

qµ =

{−2 ln λ(µ) µ̂ ≤ µ ,

0 µ̂ > µ .
(21)

The statistic q1 is the special case of qµ for µ = 1. Note, however, that q0 has a separate
definition and is not a special case of qµ. Both are defined so as to give one-sided tests of a
hypothesized value of µ.

As can be seen from Eq. (19), the quantity λ(µ) satisfies 0 ≤ λ(µ) ≤ 1, with a value of
λ(µ) closer to unity reflecting reflecting a higher level of agreement between data and the
hypothesized value of µ. Thus higher values of q0 or qµ reflect increasing incompatibility
between the hypothesized value of µ and the data. The p-value of the hypothesized µ can
therefore be found from

pµ =

∫

∞

qµ,obs

f(qµ|µ) dqµ . (22)

The upper limit on µ at confidence level 1−α is the highest value of µ not rejected in a test
of size α. In practice this is found by setting pµ = α and solving for µ. With this procedure,
a strong downward fluctuation of the data can result in an upper limit that is substantially
smaller than the intrinsic resolution of the measurement, even to the point where all values
of µ are excluded. To protect against this, one can base the upper limit not on the usual
p-value but on the quantity CLs [3], defined as

CLs =
pµ

1 − p0
. (23)

Alternatively, one may determine the Power-Constrained Limit [4]. Here one regards a value
of µ as excluded if two criteria are satisfied, namely, it is excluded by the usual test (pµ < α)
and in addition one has sufficient sensitivity to µ. The measure of sensitivity adopted by
ATLAS is the power of a test of µ with respect to the background-only alternative, which is
required to be greater than a minimum threshold Mmin:

P (pµ < α|0) ≥ Mmin . (24)

The choice of Mmin is a matter of convention. The value of Mmin = Φ(−1) = 0.1587 has been
used in recent ATLAS analyses.

The p-value for discovery may be converted into the equivalent Gaussian significance Z
by the relation (see, e.g., [1]),

Z = Φ−1(1 − p) , (25)
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where Φ−1 is the standard normal quantile (inverse of the standard normal cumulative dis-
tribution). Requiring Z > 5 (a 5σ effect) corresponds to p < 2.9 × 10−7.

To determine the p-value for a hypothesized value of µ one requires the distribution
f(qµ|µ). This may be found either from Monte Carlo or by using the asymptotic formulae
discussed in Ref. [1]. The asymptotic distributions f(q0|0) and f(q1|1) are both given by
a delta function at zero with a weight of one half plus a chi-square pdf for one degree of
freedom, also with weight one half. These pdfs are thus asymptotically independent of all
nuisance parameters.

Using the results from Ref. [1], the asymptotic approximation for the p-value for a hy-
pothesized value of µ is has the simple formula

pµ = 1 − Φ(
√

qµ) , (26)

where Φ is the standard normal cumulative distribution. Similarly, for the case of testing
µ = 0 for discovery, the formula for the p-value has the same form as (26), or equivalently
one can write the discovery significance as

Z =
√

q0 . (27)

Although the asymptotic formulae are exact only in the large-sample limit, Monte Carlo
studies (see, e.g., [1]) show that they are reasonably accurate even for relatively small data
samples. Even in those cases where one is not prepared to trust the large-sample formulae,
use of the asymptotic expressions provides an important check of the procedure.
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