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Comparison of significance from profile and integrated

likelihoods

A recent Statistics Forum presentation by Dan Tovey [1] studied the problem of estimating
the discovery significance based on a number of observed events n sampled from a Poisson
distribution, with Gaussian uncertainty in the background. In Section 1 we treat the problem
using the profile likelihood, and in Section 2 we use an integrated likelihood.

1 Statement of the problem and solution with profile likeli-

hood

Using a slightly different notation than [1], suppose n is Poisson distributed with mean
value µs + b. Here s is the expected number of signal events, b is the expected number of
background events, and µ is a strength parameter defined such that µ = 0 is the background-
only hypothesis and µ = 1 is the hypothesis of background plus signal. Here suppose s is
known with no uncertainty.

Suppose our only information about b comes from a measured value m assumed to be
Gaussian distributed about b with standard deviation σ. Here σ is known and b is treated as
a free parameter.

The unknown parameters are thus µ and b and the measurements are n and m. The
likelihood function is

L(µ, b) =
(µs + b)n

n!
e−(µs+b) 1√

2πσ
e−(m−b)2/2σ2

, (1)

or equivalently the log-likelihood is

lnL(µ, b) = n ln(µs + b) − (µs + b) − (m − b)2

2σ2
+ C , (2)

where C is a constant that can be dropped.

To test a hypothesized value of the strength parameter µ we form the profile likelihood

ratio,

λ(µ) =
L(µ,

ˆ̂
b)

L(µ̂, b̂)
, (3)

where µ̂ and b̂ are the (unconditional) maximum-likelihood estimators (MLEs) and
ˆ̂
b is the

condition MLE for b for a given µ. Equivalently we use the logarithmic variable

qµ = −2 ln λ(µ) , (4)
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which is defined such that larger value of qµ correspond to increasing incompatibility between
the data and the hypothesized µ.

Here for the model to make sense physically we consider only non-negative values of µ

and b. Constraining all of the estimators for µ and b to be non-negative one finds

µ̂ =







n−b
s n ≥ m ,

0 otherwise ,
(5)

and

b̂ =











m n ≥ m ,

1
2

(

m − σ2 +
√

(m − σ2)2 + 4nσ2
)

otherwise ,
(6)

As we will consider only the discovery significance we are testing the hypothesis µ = 0,

and we need therefore
ˆ̂
b given µ = 0, which is

ˆ̂
b(µ = 0) =

1

2

(

m − σ2 +
√

(m − σ2)2 + 4nσ2

)

. (7)

To quantify the level of discrepancy between observations n and m and a hypothesized
value of µ, we compute the probability, assuming µ, to find qµ greater than or equal to
the value found with the real data. This probability can be computed by Monte Carlo, or
alternatively one can exploit the fact that for sufficiently large n, the sampling distribution of
qµ under the assumption of µ approaches a limiting form related to the chi-square distribution.
Specifically, it is a superposition of a delta function at zero and a chi-square distribution for
one degree of freedom, with each term carrying a weight of one half (see, e.g., [2]),

f(qµ|µ) = 1

2
δ(qµ) + 1

2
fχ2

1

(qµ) . (8)

The p-value is the probability to observe a value of qµ greater than or equal to that found
with the data,

p =

∫

∞

qµ,obs

f(qµ|µ) dqµ . (9)

The significance Z is then given by (see, e.g., [2]),

Z = Φ−1(1 − p) , (10)

where Φ−1 is the quantile (inverse of the cumulative distribution) of the standard Gaussian.
For the sampling distribution given by (8), one can show that the significance is given by the
simple formula

Z =
√

qµ,obs . (11)

Following [1] we have worked out an example with b = 3.1 and σ = 0.5, for a test of the
hypothesis µ = 0. By repeating 109 experiments in a toy Monte Carlo program, the sampling
distribution of q0 was obtained, and is shown in Fig. 1(a). One minus the corresponding
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Figure 1: (a) The distribution of the test statistic q0 under the µ = 0 hypothesis; (b) one minus
the corresponding cumulative distribution. The curve shows the asymptotic distribution (8). The
dotted curves indicate a 68.3% central confidence interval. The horizontal line is at 2.87× 10−7 (the
5σ discovery threshold).

cumulative distribution is shown in Fig. 1(b). One can see that the asymptotic approximation
(8) is an excellent approximation event out to the level of a 5σ discovery, corresponding to
q0 = 25.

We can estimate the median significance given data values n and m simply by setting
them equal to their expectation values, i.e., n = s and m = b, which results in an observed
value of q0 = 26.41. From Monte Carlo the probability to find q0 greater than or equal to
this value gives a p = 1.27 × 10−7, corresponding to a significance Z = 5.15. Alternatively
one can use the asymptotic formula (11) which gives very close to the same value: Z = 5.14.

2 Solution with integrated likelihood

An alternative model for the problem above is to say that the background parameter b has
an uncertainty characterized by a prior probability density π(b), which we can take to be a
Gaussian of standard deviation σ, centred about a true (unknown) value b0. The probability
to find n events is taken to be a Poisson distribution with a mean of µs+b where b is sampled
from π(b), i.e.,

P (n|µ, s, b0) =

∫

(µs + b)n

n!
e−(µs+b) π(b) db . (12)

One can use the probability (12) to define a ratio of integrated likelihoods, which could
then be used in a manner similar to the profile likelihood ratio above. Alternatively we can
find the p-value of the µ = 0 hypothesis simply by computing the probability, under the
assumption of µ = 0, of finding a number of events greater than or equal to the number
found in the data, i.e.,

p =
∞
∑

n=nobs

P (n|µ, s, b0) . (13)

The p-value can be computed using Monte Carlo by sampling b from π(b) and then generating
n from the a Poisson distribution with mean µs + b (i.e., using a mean b if one is testing the
hypothesis µ = 0).
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If we suppose as before a data value nobs = 17, and a mean and standard deviation for
the Gaussian prior π(b) of b0 = 3.1 and σ = 0.5, then we find p = 1.98 × 10−7 corresponding
to a significance of Z = 5.07.

In the case of the p-value computed from equation (13), one computes the probability
P (n ≥ nobs). Because n is discrete, this means that a generated experiment is always counted
as having equal compatibility with the hypothesis when n = nobs (and thus it counts towards
the probability of the p-value). This is in contrast to the profile-likelihood method, where
the level of compatibility was based on both the discrete n and the continuous m. In that
case, depending on the fluctuations of m, half of the events with n = nobs would be counted
as having equal or greater compatibility and half with less.

One can check this using the integrated likelihood by computing the number of events
with equal or lesser compatibility in the following way. If n > nobs, the event counts as
one event, and if n = nobs it counts as one half. The fraction of events with equal or lesser
compatibility determined in this way gives a p-value of p = 1.20 × 10−7 (Z = 5.16), almost
exactly the same as when using the profile likelihood.
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