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Discovery significance with statistical uncertainty

in the background estimate

1 Introduction

In a search for a new type of event, data samples are used to estimate the expected number
events for signal s and background b for a given integrated luminosity. In the design phase
of the search this is done with Monte Carlo (MC). Establishing a discovery requires rejecting
the hypothesis of background only. To quantify the statistical significance of a discovery, one
can quote the equivalent fluctuation Z of a standard Gaussian variable. In the limit s � b
and for sufficiently large b one finds Z = s/

√
b, where s and b are assumed to be known

precisely.

In practice s and b are estimated using a finite amount of data, and therefore their values
have statistical uncertainties. It can happen, for example, that no background events pass
the cuts (e.g., in control regions or from background MC) so that the naive estimate for the
background is b = 0. In such cases, expressions such as s/

√
b clearly do not yield a sensible

result. One might try, for example, to use an upper limit for b at some confidence level
(CL). Which CL to choose is not obvious, however, and therefore at best this leads to an
approximate recipe.

Here we describe methods for incorporating statistical uncertainties into an estimate of
the discovery significance. For discovery, only the statistical uncertainty of the background
estimate is relevant. For setting limits, the error on s enters as well. In this note we focus
on discovery and treat s as known. To include the uncertainty on s is a straightforward
generalization of the method described here.

The statistical formalism is based on the profile likelihood ratio as used in [1] and described
in, e.g., [2]. For completeness the relevant ingredients are summarized here.

The profile likelihood ratio is a well-established tool for including systematic uncertainties
that can be related to nuisance parameters (any parameter that is not of direct interest in
the final result), such as background rates. It is also appropriate to use this method to
include the statistical uncertainty resulting from a limited Monte Carlo sample into the
expected significance of a future measurement. Once the actual measurement is carried out,
the statistical uncertainty in the background comes no longer from Monte Carlo but rather
from control regions using real data, but the mathematical treatment remains essentially the
same.

In this note we consider a measurement consisting of a single number of events n found
in a search region, combined with subsidiary measurements to determine the background.
It is straightforward to extend this to measurements that include shapes of distributions or
combinations of multiple channels.
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2 Statistical formalism

Suppose n events are selected in a search region where both signal and background could be
present. The expectation value of n can be written

E[n] = µs+ btot , (1)

where s is the expected number from signal and btot is the expected total background (i.e.,
from all sources). Here µ is a strength parameter defined such that µ = 0 corresponds to the
background-only hypothesis and µ = 1 gives the nominal signal rate plus background.

Suppose that btot consists of N components, i.e.,

btot =
N

∑

i=1

bi . (2)

To estimate the expected number of events from background component i using Monte Carlo,
we generate a sample of Mi events, and in addition the generator calculates a cross section
σi. From these we have the equivalent integrated luminosity of the MC sample, Li = Mi/σi.

Supposemi of these events are selected in the search region. From a statistical standpoint,
this is equivalent to having a subsidiary measurement mi modeled as following a Poisson
distribution with expectation value

E[mi] = τibi . (3)

Here τi is a scale factor that relates the mean number of events that contribute to n (the
primary measurement), to that of the ith subsidiary measurement. If mi is the number of
MC events found in the search region, then τi is the ratio of the integrated luminosity of the
Monte Carlo sample to that of the data,

τi =
LMC,i

Ldata
. (4)

In the case where the mi represents a number of events found in a control region based on
real data, the τi is effectively the ratio of the sizes of the control to signal regions. In either
case we will assume that the τi can be determined with negligible uncertainty.

The likelihood function for the parameters µ and b = (b1, . . . , bN ) is the product of
Poisson probabilities:

L(µ,b) =
(µs+ btot)

n

n!
e−(µs+btot)

N
∏

i=1

(τibi)
mi

mi!
e−τibi . (5)

Here µ is the parameter of interest; the components of b are nuisance parameters.

To test a hypothesized value of µ, one computes the profile likelihood ratio

λ(µ) =
L(µ,

ˆ̂
b)

L(µ̂, b̂)
(6)
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where the double-hat notation refers to the conditional maximum-likelihood estimators (MLEs)
for the given value of µ, and the single hats denote the unconditional MLEs. In addition it
is convenient to define

qµ = −2 ln λ(µ) . (7)

The ratio λ(µ) is expected to be close to unity (i.e., qµ is near zero) if the data are in good
agreement with the hypothesized value of µ.

Suppose the data results in a value of qµ = qobs. The level of agreement between the data
and hypothesized µ is given by the p-value,

p =

∫ ∞

qobs

f(qµ|µ) dqµ , (8)

where f(qµ|µ) is the sampling distribution of qµ under the assumption of µ.

One can define the significance corresponding to a given p-value as the number of standard
deviations Z at which a Gaussian random variable of zero mean would give a one-sided tail
area equal to p. That is, the significance Z is related to the p-value by

p =

∫ ∞

Z

1√
2π
e−x2/2 dx = 1 − Φ(Z) , (9)

where Φ is the cumulative distribution for the standard (zero mean, unit variance) Gaussian.
Equivalently one has

Z = Φ−1(1 − p) , (10)

where Φ−1 is the quantile of the standard Gaussian (inverse of the cumulative distribution).

In order to establish a discovery we try to reject the background-only hypothesis µ = 0.
For example, a threshold significance of Z = 5 corresponds to a p-value of 2.87 × 10−7.

To find the p-value we need the sampling distribution f(qµ|µ) (specifically, for discovery
we need f(q0|0)). Under a set of regularity conditions and for a sufficiently large data sample,
Wilks’ theorem says that for a hypothesized value of µ, the pdf of the statistic qµ = −2 lnλ(µ)
approaches the chi-square pdf for one degree of freedom [3]. More generally, if there are N
parameters of interest, i.e., those parameters that do not get a double hat in the numerator of
the likelihood ratio (6), then qµ asymptotically follows a chi-square distribution for N degrees
of freedom. A proof and details of the regularity conditions can be found in standard texts
such as [4].

In the searches considered here, the data samples are usually large enough to ensure the
validity of the asymptotic formulae for the likelihood-ratio distributions. Nevertheless the
distributions are modified because of constraints imposed on the expected number of events.

Usually when searching for a new type of particle reaction one regards the mean number
of events contributed to any bin from any source, signal or background, to be greater than
or equal to zero. In some analyses it could be a meaningful to consider a new effect that
suppress the expected number of events, e.g., the presence of a new decay channel could mean
that the number of decays to known channels is reduced. Here, however, we will regard any
contribution to an expected number of events as non-negative.
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Assuming only non-negative event rates, the maximum-likelihood estimators for the pa-
rameters are constrained, e.g., µ̂ ≥ 0. If the observed number of events is below the level
predicted by the background alone, then the maximum of the likelihood occurs for µ = 0,
i.e., negative µ is not allowed. The likelihood ratio is then (see (6)),

λ(0) =
L(0,

ˆ̂
b)

L(µ̂, b̂)
=
L(0,

ˆ̂
b)

L(0, b̂)
= 1 , (11)

since µ̂ = 0 and therefore
ˆ̂
b = b̂. The statistic q0 = −2 lnλ(0) is therefore equal to zero.

Under the background-only hypothesis, the data will fall above or below the background
expectation with approximately equal probability. In those cases where the data fluctuate
up we have µ̂ > 0 and q0 follows a chi-square pdf for one degree of freedom, fχ2

1

. If µ̂ = 0,
then q0 = 0. Assuming a fraction w for the cases with µ̂ > 0 one has the pdf

f(q0|0) = wfχ2
1

(q0) + (1 − w)δ(q0) . (12)

In the usual case where upward and downward fluctuations are equally likely we have w = 1/2.

Consider now the variable

u =
√
q0 =

√

−2 ln λ(0) , (13)

which has the pdf

f(u) = Θ(u)w

√

2

π
e−u2/2 + (1 − w)δ(u) , (14)

where Θ(u) = 1 for u ≥ 0 and is zero otherwise. The second term in (14) follows from the
fact that the values q0 = 0 and u = 0 occur with equal probability, 1 − w. Furthermore
if a variable x follows the standard Gaussian, then one can show x2 follows a chi-square
distribution for one degree of freedom. Therefore if x2 follows a χ2 distribution, then

√
x2

follows a Gaussian scaled up by a factor of two for x > 0 so as to have a total area of unity.

The p-value of the µ = 0 hypothesis for a non-zero observation q0 is therefore

p = P (u ≥ √
q0) = 2w

∫ ∞

√
q0

1√
2π
e−u2/2 du = 2w(1 − Φ(

√
q0)) . (15)

Combining this with equation (10) for the significance Z gives

Z = Φ−1(1 − 2w(1 − Φ(
√
q0))) . (16)

In the usual case where the weights of the chi-square and delta-function terms are equal, i.e.,
w = 1/2, equation (16) reduces to to the simple formula

Z =
√
q0 =

√

−2 lnλ(0) . (17)

In cases where the data sample is not large enough to guarantee the validity of the asymptotic
distribution, Monte Carlo studies can be carried out to find the sampling distribution of q0,
and from this the discovery significance for a given observed value.
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To calculate the value of qµ that one would obtain from a set of data values n and

m1, . . . ,mN , one needs the unconditional estimators µ̂ and b̂, and the conditional MLEs
ˆ̂
b,

i.e., the values of b that maximize the likelihood for the specified value of µ.

The value of n itself is only available from the real data. To quantify the sensitivity of
the analysis, one can report the expected or median significance one would obtain for data
based on the best estimate of signal plus background. To good approximation, the median
significance can be found by replacing n with s+ b̂. This is referred to as an ‘Asimov’ data
set.1

In cases with more than one background component, it is easiest to solve for the required
quantities numerically. A program for doing this is available from [6].

As an example consider a planned search [7] where six different background sources were
investigated with separate MC samples. The expected numbers of events for a luminosity of
L = 1 fb−1 and the equivalent luminosity of the MC samples is shown Table 1.

Table 1: Number of expected background events bi and equivalent luminosities Li from Monte Carlo
in a planned search.

bi Li (fb−1)

11 0.95
0 2.67
1 2.98
0 1.22
0 2.98
0 0.75

For L = 1 fb−1, s = 312 signal events are predicted. Using these numbers gives Z = 18.1. In
a similar manner the 5σ discovery threshold is found to be at a luminosity of 72 pb−1.

In this example, the impact of those background components where no events passed the
cuts is small. If they are neglected entirely one finds Z = 18.8. If, however, the equivalent
luminosity of one of the background samples had been much less than the data luminosity,
then this would have a significant effect. Changing the luminosity of the last component in
Table 1 from 0.75 to 0.075 results in Z = 6.7; if it is reduced to 0.0075, one finds Z = 2.2. A
more detailed study of this effect is shown for the case of a single background component in
Section 3.

3 Case of a single background component

If we only have one background component, i.e., a measurement m with mean τb, then the
required estimators can be written easily in closed form. Taking into account the constraint
µ̂ ≥ 0 one finds

1The name of the Asimov data set is inspired by the short story Franchise, by Isaac Asimov [5]. In it,
elections are held by selecting a single voter to represent the entire electorate.
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µ̂ =







n−m/τ
s n ≥ m/τ

0 otherwise ,
(18)

b̂ =







m/τ n ≥ m/τ

n+m
τ+1 otherwise ,

(19)

For the case of discovery, we are only interested in the hypothesis of µ = 0. The conditional
MLE for b given µ = 0 is

ˆ̂
b =

n+m

τ + 1
. (20)

Putting together the ingredients for lnλ(0) yields

lnλ(0) =







ψ(m, τ
ˆ̂
b) + ψ(n,

ˆ̂
b) − ψ(m, τ b̂) − ψ(n, µ̂s+ b̂) n ≥ m/τ ,

0 otherwise ,
(21)

where

ψ(x, y) =

{

0 x = y = 0 ,

x ln y − y otherwise .
(22)

To find the median significance assuming the signal is present at the nominal rate, we replace
n by s+ b̂ (the Asimov data set).

As an example where no background events survive the cuts, suppose s = 7, τ = 6.7, and
m = 0, and therefore we take n = 7 and have b̂ = 0. In this case the result simplifies to

q0 = −2 lnλ(0) = 2s ln(1 + τ) = 28.5 . (23)

Using the asymptotic formula (17) for the significance gives

Z =
√
q0 = 5.3 . (24)

The accuracy of this approximation can be checked over a range of values of b using a simple
Monte Carlo simulation. Note that in this case because m = 0, the significance goes to zero as
τ decreases to zero. That is, a very weak constraint on the background leads to a decreasing
discovery significance.

In the limit where τ is very large, the background estimates
ˆ̂
b and b̂ both approach b, and

equation (21) becomes

lnλ(0) = −n ln
n

b
+ n− b . (25)

for n ≥ b and zero otherwise. The median significance under the hypothesis of µ = 1 can be
approximated by substituting the ‘Asimov’ value s+ b for n in equation (25), i.e.,
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median[Z|µ = 1] ≈ −(s+ b) ln

(

1 +
s

b

)

+ s (26)

The median discovery significance is for τ → ∞ (i.e., b known) therefore given by

Z =

√

2

(

(s+ b) ln

(

1 +
s

b

)

− s

)

. (27)

If one then takes the limit s� b, then by expanding the logarithm in (26) and retaining
terms up to order s2, this becomes

lnλ(0) ≈ −s
2

2b
. (28)

Combining this with equation (17) for the significance then gives

Z ≈ s√
b
. (29)

Thus in the limit of small s/b and with b well determined (large τ), one recovers the widely
used formula.

Figure 1 shows the significance Z with b = 10 computed as a function of s. The plot
shows the full calculation for Z for τ = 1, the formula (27) valid for large τ , and the limiting
formula (29) valid for large τ and s� b.
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Figure 1: The significance Z as
a function of the expected signal s
according to several formulae (see
text).

From the figure one can see that for s = 10, i.e., in this example s/b = 1, the approximate
formula s/

√
b gives 2.78, the full calculation gives 3.16, and the large τ approximation gives

1.84. For s/b much greater than unity, s/
√
b overestimates the significance by an increasingly

non-negligible amount. The effect of the statistical error on the estimate of b is also seen to
be very significant through the substantial difference between the curves for τ = 1 and the
large-τ limit.

Also shown in Fig. 1 are curves for the mean and median significances computed numeri-
cally for the case of b known with n generated according to a Poisson distribution with mean
s+b. These two curves represent the exact answer for the fixed b case in that they do not rely
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on any asymptotic approximations. For significance values relevant to discovery or exclusion,
say, Z > 1, they are in good agreement with the curve of equation (27) using the profile
likelihood with Asimov data. For low s one can see that the profile likelihood prediction in
the large τ limit is too high, but this is only in a region of very low significance values, not
relevant for discovery or limits.

The significance calculation shown here can be used to help establish the appropriate
amount of MC data needed to determine the discovery significance. Figure 2 shows the
discovery significance Z as a function of the luminosity ratio τ = LMC/Ldata for several
values of b and s.
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Figure 2: The significance Z as
a function of the luminosity ratio
τ = LMC/Ldata for several values
of b and s.

In these examples one sees a rapid change in Z as the luminosity ratio τ varies between
around 0.5 and 5. For τ < 0.5 the significance is degraded by a factor of two; for τ > 5 the
improvement is slight.
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