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Note on estimate of efficiency

Suppose for each event one measures two variables, x and y. The events can correspond
to one of two hypotheses, electron or proton (e or p). Suppose that by requiring y > ycut
one can achieve a very high electron purity. The goal is to estimate the electron selection
efficiency of the cut on y.

Suppose one creates disjoint intervals according to the variable y, e.g.,

y0 ≤ y < y1 ,

y1 ≤ y < y2 ,

. . .

yn−1 ≤ y < yn ,

yn ≤ y ,

where for the last interval yn = ycut; this corresponds to the final interval for which we want
to know the efficiency.

Within each interval one can use the x values to determine the fractions of electrons and
protons by fitting the function

f(x|y ∈ ∆yi, ai) = aif(x|y ∈ ∆yi, e) + (1− ai)f(x|y ∈ ∆yi, p) . (1)

Here the coefficient ai gives the fraction of electrons and it is assumed here that the pdfs
f(x|y ∈ ∆yi, e) and f(x|y ∈ ∆yi, p) can be determined from Monte Carlo; for now the
uncertainty in these shapes is not considered. The output of the fit is then a set of estimated
values âi with variances V [âi]. As the intervals are disjoint, the estimators are uncorrelated.

The number of electrons Ne,i in interval i can be estimated as

N̂e,i = Niâi , (2)

where Ni is the total number of events in the ith y interval. The values Ni can be modeled as
following a multinomial distribution with probabilities for each bin of y of p0, p1, . . . pn and a
total number of entries (without any cut on y) of Ntot.

The covariance matrix for the multinomial distribution is

cov[Ni, Nj ] = Ntotpi(δij − pj) . (3)

Estimates for these values can be obtained by estimating the individual probabilities using
the observed numbers of events found. That is, one takes
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ĉov[Ni, Nj ] = Ntotp̂i(δij − p̂j) (4)

with

p̂i = Ni/Ntot . (5)

The desired efficiency is the expected number of electrons in y-interval n divided by the
total number of electrons, i.e.,

εe =
Ntotpnan∑n
i=0

Ntotpiai
. (6)

This is estimated by using Ni to determine Ntotpi and replacing the ai with their correspond-
ing estimators âi, i.e.,

ε̂e =
N̂e,n∑n
i=0

N̂e,i

=
Nnân∑n
i=0

Niâi
. (7)

As the covariance for the Ni and âi are available one can use error propagation to deter-
mine the corresponding variance of ε̂e.

In its current form, there would be no loss in simply taking two y intervals, i.e., y < ycut
and y ≥ ycut. The formulae above still apply.

By using a larger number of y intervals, however, one could reduce the statistical error in
ε̂e if it is possible to parameterize the dependence of the electron fraction a on the variable
y. That is, suppose one had a function a(y;θ) for some set of parameters θ = (θ1, . . . , θm),
where we assume that the number of parameters m is less than the number of y intervals
(n+ 1). Then one could carry out a standard least squares fit to determine θ by minimizing

χ2(θ) =
n∑

i=0

(âi − a(yi;θ))
2

σ2

âi

, (8)

where yi could be taken as the centre of the ith interval. This fit would provide a covariance
matrix Vij = cov[θ̂i, θ̂j ]. One could then use Eq. (7) above but with âi replaced by a(yi; θ̂).

By using error propagation now with the covariance matrices for the Ni and the a(yi, θ̂) one
can determine the variance in ε̂e.

2


