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Bayes Factors for Discovery

The fundamental quantity one should use in the Bayesian framework to quantify the
significance of a discovery is the posterior probability of the signal model. This depends,
however, on the prior probability for all possible hypotheses, including that of the signal, on
which different people may have widely differing views.

Alternatively, one can one can summarize an experimental result by use of a Bayes factor,
B10, which quantifies the degree to which one of two hypotheses, H0 or H1, is preferred by
the data. This requires no overall prior probabilities for H0 or H1, but priors must be given
for all of the internal parameters of the two models.

For a pair of hypotheses H0 and H1 the Bayes factor is defined as the posterior odds
divided by the prior odds,

B10 =
P (H1|x)

P (H0|x)

π0
π1

=
P (x|H1)

P (x|H0)
. (1)

Here x refers to the data and πi (i = 0, 1) are the prior probabilities. That is, B10 is the
same as the posterior odds if one were to assume equal prior probabilities, and it is thus an
indicator of which model is preferred by the data. The second equality in (1) follows from
Bayes’ theorem, and therefore the Bayes factor is also equal to the ratio of likelihoods.

If a model contains any internal parameters, then to obtain the likelihood these must be
characterized by a meaningful prior pdf and marginalized, i.e.,

P (x|Hi) =

∫
P (x|Hi, θi)πi(θi) dθi , (2)

where θi are the internal parameters for model Hi (i = 0, 1) and πi(θi) is the corresponding
prior pdf. It is important to note that in this case the prior pdf cannot be improper, as this
would only be defined up to an arbitrary constant and the Bayes factor would not be well
defined. Furthermore, if an improper prior is made proper by imposing a cut-off, then the
Bayes factor will retain a dependence on this cut-off. Thus all internal parameters of the
models must be characterized by meaningful, proper priors.

When using the Bayes factor to quantify significance of a Higgs signal, the hypothesis H0

always refers to the background-only model, and its internal parameters include the full set
of nuisance parameters θ (of course the Higgs mass does not appear in H0).

For the alternative hypothesis, H1, one can choose specific values of the strength parame-
ter µ and/or the Higgs mass mH and calculate the Bayes factor as a function of these. In this
case the look-elsewhere effect is not taken into account, and so one may find a large value of
B10 for some values mH if a large mass range is searched. To account for the look-elsewhere
effect, one should specify a prior for the Higgs mass and integrate over mH when calculating
the marginal likelihood.

An important difficulty in computing Bayes factors is related to numerical challenges in
computing the required marginal likelihoods given by Eq. (2). Here this has been done using
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nested sampling [1] as implemented in the MultiNest package [2]. In this algorithm one
defines

X(λ) =

∫
L(θ)>λ

π(θ) dθ , (3)

so that the desired integral can be written

∫
L(θ)π(θ) dθ =

∫ 1

0
λ(X) dX . (4)

Here λ(X) is the inverse of Eq. (3), and in this way the marginal likelihood is reduced to a
one-dimensional integral.

1 Bayes factors for the Poisson problem

Consider a measured number of events n that follows a Poisson distribution with mean s+ b.
Suppose b is known, and we want to distinguish between two hypotheses:

H0 : s = 0 ,

H1 : s > 0 .

The likelihood for H0 is

L(n|H0) =
bn

n!
e−b , (5)

and for H1 it is

L(n|s,H1) =
(s+ b)n

n!
e−(s+b) , (6)

Suppose that the overall prior probabilities for the two hypotheses are P (H0) and P (H1) =
1− P (H0). Furthermore suppose that the prior probability for s under assumption of H1 is

π(s|H1) =
1

smax
(7)

for 0 < s ≤ smax and zero otherwise.

The posterior probability density for s given n under assumption of H1 is from Bayes’
theorem

p(s|n,H1) =
L(n|s,H1)π(s|H1)∫
L(n|s,H1)π(s|H1) ds

(8)

=
(s+ b)ne−(s+b)∫

smax

0 (s+ b)ne−(s+b) ds
. (9)
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In the limit where smax to infinity, this probability goes to

p(s|n,H1) =
(s+ b)ne−(s+b)

Γ(n+ 1)− γ(n+ 1, b)
, (10)

where

γ(a, x) =

∫
x

0
ta−1e−t dt (11)

is the lower incomplete gamma function and Γ(a) = γ(a,∞) is the usual Euler gamma
function. That is, the posterior probability p(s|n,H1) approaches a limiting form that is
independent of smax.

In addition to p(s|n,H1), however, we would also like to know the posterior probabilities
of the two hypotheses, P (H0|n) and P (H1|n). Applying again Bayes’ theorem, these are
found to be

P (H0|n) =
L(n|H0)P (H0)

P (n)
, (12)

P (H1|n) =

∫
smax

0 L(n|s,H1)P (H1)π(s|H1) ds

P (n)
, (13)

where P (n) is the probability for n summed over all hypotheses,

P (n) = L(n|H0)P (H0) +

∫
smax

0
L(n|s,H1)P (H1)π(s|H1) ds . (14)

For H1 we integrate over s to find the marginal likelihood,

m1 =

∫
L(n|s,H1)π(s|H1) ds (15)

=
1

n!smax

∫
smax

0
(s+ b)ne−(s+b) ds (16)

=
1

n!smax
(γ(n+ 1, smax + b)− γ(n+ 1, b)) . (17)

The hypothesis H0 has no nuisance parameters so its marginal likelihood is simply m0 =
L(n|H0). The desired posterior probabilities are

P (H0|n) =
m0P (H0)

m0P (H0) +m1P (H1)
, (18)

P (H1|n) =
m1P (H1)

m0P (H0) +m1P (H1)
, (19)

and the Bayes factor B10 is
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B10 =
P (H0|n)/P (H0)

P (H1|n)/P (H1)
=

m1

m0
(20)

=
1

smax

γ(n+ 1, smax + b)− γ(n+ 1, b)

bne−b
. (21)

Although the conditional posterior probability p(s|n,H1) can be normalized to unity and
thus decouples from smax in the limit smax → ∞, the probabilities for H0 and H1, and thus
also the Bayes factor, retain a dependence on smax, such that in the limit where smax → ∞,
then P (H0|n) → 1, P (H1|n) → 0, and thus B10 → 0. The Bayes factor is shown in Fig. 1 for
b = 2, n = 8 as a function of smax.
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Figure 1: The Bayes factor B10 versus
the cut-off smax for b = 2, n = 8 (see text).

For smax = 0, by construction one has B10 = 1. As smax is increased, the data initially
favour the signal model H1. If smax becomes very large, however, then the increased volume
of the parameter space of H1 penalizes its probability, and the Bayes factor B01 tends toward
zero.

2 Relation between B10 and p-value of H0

Rather than computing B10 (or B01) with the alternative hypothesis defined to be any positive
value of s, one may take H1 to refer to a specific value of s. That is, one may compute Bs0

as a function of s, as indicated in Fig. 2. If a signal is observed, then this quantity will have
peak at the corresponding value of s, which corresponds to the estimate of the signal strength
ŝ.
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Figure 2: The Bayes factor Bs0 versus
the signal rate for the alternative hypoth-
esis s (see text).
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