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Comment on use of a different distributions for constraining

nuisance parameters

Suppose an analysis contains a parameter of interest µ and a nuisance parameter θ.
Sometimes the uncertainty on θ is characterized by the statement that its value could lie
anywhere in an interval [a, b]. It can be tempting to interpret this as meaning that one’s
degree of belief about the true value of the parameter is uniformly distributed between a
and b and is zero outside these limits. In a Bayesian analysis this is equivalent to taking a
uniform (box) distribution for the prior pdf

πθ(θ) =







1
b−a a ≤ θ ≤ b ,

0 otherwise.
(1)

Bayes’ theorem is used to find the posterior probability for θ given the data, that we denote
here as x,

p(θ|x) ∝ L(x|µ, θ)πµ(µ)πθ(θ) . (2)

Here we have assumed that the prior pdfs for µ and θ factorize, which is to say the two
parameters are independent. Inference about the parameter of interest µ is then obtained by
integrating (marginalizing) over θ,

p(µ|x) =
∫

p(µ, θ|x) dθ . (3)

It is difficult to imagine, however, that one’s degree of belief in θ changes from a constant
finite value just inside the interval to zero just outside. The usual case is that if one only
has a best estimate θ̃ for θ, then there are many possible ways how or reasons why this could
depart from the true value θ. The deviation θ − θ̃ is the sum of all of these contributions.
One can then argue on the basis of the central limit theorem that a more realistic model for
one’s uncertainty is a Gaussian distribution.

On the other hand, the tails of a Gaussian distribution fall off extremely quickly and this
is also often an unrealistic model for one’s genuine uncertainty. To have a bell-shaped curve
that has longer tails one can use a prior based on a Student’s t distribution,

π(θ) =
Γ
(

ν+1
2

)

√
νπΓ(ν/2)

(

1 +
t2

ν

)

−(ν+1)/2

. (4)

Here

t =
θ − θ̃

λ
, (5)
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θ̃ is the best estimate of θ, λ is a scale parameter that determines the width of the distribution.
The parameter ν is the number of degrees of freedom, which controls the tails. This is a
continuous parameter defined for ν ≥ 1. For ν → ∞ the Student’s t becomes a Gaussian
distribution; for ν = 1 it is the Cauchy distribution, which has infinite variance. For ν > 2
the variance is

σ2
t =

ν

ν − 2
(6)

so that the standard deviation of the prior π(θ) is

σθ = λ

√

ν

ν − 2
. (7)

For any of the priors mentioned above (box, Gaussian, Student) one can ask what the
equivalent (or closest matching) frequentist procedure would be. To answer this one can ask
what information led to the degree of belief encapsulated by π(θ), which is centred about our
best estimate θ̃. Suppose, for example, that before we obtained the estimate θ̃ we had “no
information” about θ and on this basis we take the prior to be a constant.1 Suppose further
that we treat the best estimate θ̃ as a measured quantity with a likelihood L(θ̃|θ). That is, if
we were to repeat the measurement many times, the sampling distribution of θ̃ would follow
the distribution given by this likelihood.

We can then ask what form L(θ̃|θ) would have in order to obtain, starting from a constant
prior for θ, one of the priors mentioned above. This “intermediate” prior will be obtained from
the original constant prior, π0(θ) = const. and the likelihood L(θ̃|θ) using Bayes’ theorem:

π(θ|θ̃) ∝ L(θ̃|θ)π0(θ) . (8)

Because π0(θ) is constant, we simply need a likelihood that satisfies

L(θ̃|θ) ∝ π(θ|θ̃) . (9)

In all three cases above (box, Gaussian, Student) this is a sampling distribution with the
same functional form as the prior. For example, for the box one imagines that θ̃ follows a
sampling distribution given by the likelihood

L(θ̃|θ) =







1
∆θ |θ̃ − θ| < ∆θ/2 ,

0 otherwise.
(10)

This follows directly from the prior (1) centred about θ̃ = (a + b)/2 and having a width
∆θ = b− a.

One can also imagine examples of priors for which it is not possible to write down a mean-
ingful frequentist equivalent. Suppose, for example, one would like to represent uncertainty
in a parameter θ by an exponential distribution

π(θ) =
1

θ̃
e−θ/θ̃ . (11)

1Having “no information” about a parameter is not really well defined. For example, a uniform distribution

about θ implies a nonuniform pdf for a nonlinear function of θ.
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If we suppose that this prior emerged from an earlier constant prior, then it is not possible
to write down a normalizable sampling distribution for θ̃ that would lead to Eq. (11).

Let us suppose, however, that we are able to regard θ̃ as a measured quantity with a
likelihood L(θ̃|θ). Then the full likelihood for the rest of the measured quantities, which we
are writing as x, and θ̃ is

L(x, θ̃|µ, θ) = Lx(x|µ, θ)Lθ̃(θ̃|θ) . (12)

where subscripts x and θ̃ have been introduced to indicate the parts of the likelihood that
describe the corresponding measured quantities.

One can now use the likelihood (12) in a frequentist analysis where the nuisance parameter
θ is eliminated by forming the profile likelihood

Lp(µ) = L(x, θ̃|µ, ˆ̂θ(µ)) . (13)

Using this in a test of µ based, e.g., on the profile likelihood ratio

λ(µ) =
Lp(µ)

L(µ̂, θ̂)
(14)

will lead to a result that is similar but not identical to the Bayesian result obtained from the
marginalization integral (3).
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