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Covariance matrix for histogram made using seed events

Consider a histogram created by generating Ngeq “seed events” according to a given
distribution, and then using each seed event to generate a further number N, events by
smearing with a certain resolution function, which results in a final histogram with n; entries
in the 7th bin. Because each seed event contributes Ng,;, times to the histogram, there are
correlations between bins. This note gives an expression for the covariance cov([n;, n;] between
the number of entries in any pair of bins. The result is given in equation (12) below for the
case where the number of seed events Ngeeq is treated as a constant and by equation (18) for
the case where Ngeeq is a Poisson variable with mean vgeeq-

The result for cov[n;, n;] of course also provides the standard deviations
o[n;] = y/cov[n;, n; , (1)
and the matrix of correlation coefficients,

o cov(ni, nj]
P9 = ofnilofng]

1 Case of fixed number of seed events

In this section we consider the case where the number of seed events, Ngeeq, is taken as a
constant; it does not fluctuate upon repetition of the experiment. Suppose the indices i, j,
denote a bin of the final histogram (after smearing) and let s be a bin in which the seed
event is found. The seed events are labelled with indices a,b = 1,..., Ngeeq- Let n;, be the
number of events found in bin ¢ from seed event a. The total number of entries found in bin
1 is obtained by summing over all seed events:

Nseed

ni= Y Mig - (3)
a=1

The covariance cov([n;, n;] is given by

coving,n;] = E[nn;] — E[n;|En;] . (4)

We can find E[n;] by first considering the case of a single seed event a. This is



E[nia] = Zniap(nia)

Nia
= Zzniap(nia|3)Qs
§ TNig
= ZE[nia|3]Qs
= Nsimzljist = Nsim?i , (5)
s

where the sums are over all possible values of 14 (0 to Ngm) and s (over all bins). Here P(n;,)
is the probability to find n;, entries in bin ¢ from seed event a, P(n;,|s) is the corresponding
conditional probability given that the seed event is in bin s, and and @, is the probability
for the seed event to be in bin s. In the third line of (5), E[n;q|s] = NsimPis is the expected
number of entries in bin ¢ given that the seed event is in bin s, and F; is the probability to
observe an event in bin ¢ given that the seed event is in bin s. By symmetry this is the same
for all seed events and therefore it does not depend on the index a. In the last line of (5) we
used the notation

?i = Z Pz'st . (6)
S
Summing over Ngeeq independent seed events gives

E[nz] = NseestimFi . (7)

We now need the expectation value E[n;n;]. This can be written

Nseed Nseed Nieed
(Z nm> (Z njb>] = Z Elnignjp) - (8)
a=1 b=1

a,b=1

E'[nmj] =F

Of the Nfeed terms in the double sum, Ngeq have a = b. For the Nfeed — Ngeeq terms with
a # b, the seed events are independent and therefore

Elnging) = Enia)Elng) = NamPiP;  (a #b) . (9)
For the Ngeeq terms with a = b, consider again a single seed event g found in a given bin
s. For a fixed s, n;, and nj, are multinomially distributed, and therefore the conditional
expectation value of n;,nj, for fixed s is

E[nianja|5] = Ngimlgisf)js + NsimPis(éij - Pj ) . (10)

(If one regards Ngim as a Poisson variable rather than fixed, then the second term, proportional
to Ngim, in (10) is absent.) We need to average the expectation value (10) over s and multiply
by Ngeeq to obtain



E[nzn]] = NseedZE[nianja|3]Qs
s

= Nseed (Z NSQimPistst + ZNsimPis((Sij - Pjs)Qs)
s s

= Nseest%mBIDj + Nseestim((sisz' - BID]) . (11)

Putting together the ingredients gives the covariance for n; and n;,

COV[TLZ',’IL]'] = NseedNSQim(Pin - _in) + Nseestim(ﬁi(sij - -F)Z-P]) . (12)

As mentioned above, if one takes Ngn, to be Poisson distributed rather than fixed, then the
second term in (12) proportional to Ngp, is absent. The required ingredients are thus the
matrix of probabilities P;s (probability to observe the event in bin ¢ given a seed event in bin
s), and the probability to have a seed event in bin s, Qs, both of which can be estimated,
e.g., from Monte Carlo.

2 Case of random number of seed events

In the previous section, the number of seed events Ng.q was treated as a constant. We can
also treat it as a random variable following a Poisson distribution with a mean vgeq. To find
the covariance cov[n;,n;] we need the expectation values E[n;| and E[n;n;]. For E[n;| we
have

o0

E[nz] = Z P(Nseed§Vseed)E[ni|Nseed]
Nseea=0

o0

Z P(Nseed§Vseed)NseestimPi
]Vseed:0

= Vseestimﬁi > (13)

where P(Ngeed; Vseed) 18 the Poisson probability for Ngeeq with mean value vgeeq. Equation
(7) for E[n;] is with constant Ngeq and so this was used for E[n;| Ngeeq] to obtain the second
line of (13) above.

For E[n;n;] we have

oo
E[nzn]] = Z P(Nseed;Vseed)E[ninj|Nseed]
Nseea=0

o0 Nseed
= Z P(Nseed;l/seed) Z E[nianjb|Nseed] . (14)

Nseed:() a,b:l



In the sums over a and b in equation (14) there are Ngeeq terms with a = b, and for these we
can use equation (11). For the remaining Ngeeq(Ngeeq — 1) terms with a # b we have

E[nianjb|Nseed] = E[nia|Nseed]E[njb‘Nseed] = Ns%mﬁlﬁj (a 7é b) , (15)

because two distinct seed events are not correlated. The required expectation value for a
given Ngeeq is therefore

E[ninj‘Nseed] = NseedE[nianjb‘Nseed] + Nseed(Nseed - 1)E[nia|Nseed]E[njb|Nseed] (16)

= Nseed [Nsimljipj + Nsim(?i(sij - ]D'L-Pj)] + Nseed(Nseed - 1)Ns2imﬁiﬁj .
We can then use (16) together with (14). To evaluate the result we need the Poisson expecta-
tion value E[Ngeed], and we can use the Poisson variance V[Ngeeq] = E[Nseed] — (E[Nseed])? =

Vgeed tO find

E[Ns2eed] = Vseed(’/seed + 1) . (17)

Using the resulting value of E[n;n;] together with E[n;] gives the final expression for the
covariance,

covni, 1] = seed | NomPiPs + Noim(Pidij — PiP;)] - (18)




