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Error analysis for efficiency

To estimate a selection efficiency using Monte Carlo one typically takes the number of
events selected m divided by the number generated N . This note discusses how to account for
the statistical uncertainty in the estimated efficiency. In Section 1 we model m as a binomial
random variable and find the maximum-likelihood (ML) estimator for the efficiency and its
variance. The issue of conditioning on the total number of events N is discussed. In Section 2
we show how to construct a confidence interval for the efficiency. Sometimes one wants to
fit the efficiency as a function of some other variable, e.g., photon selection efficiency versus
energy; this is examined in Section 3. Finally in Section 4 we discuss the Bayesian approach
to the problem.

1 Binomial model

The usual approach when estimating a selection efficiency is to treat the number of selected
events m as a binomially distributed variable, i.e., one finds m “successes” out of N inde-
pendent trials, where the probability of success on each trial is the efficiency ε. That is, the
probability to select m events is

P (m;N, ε) =
N !

m!(N − m)!
εm(1 − ε)N−m , (1)

where the notation above indicates that the m listed before the semicolon is treated as the
random variable and the number of trials N and efficiency ε are parameters. We take N as
known and our goal is to estimate ε.

The log-likelihood function for the unknown parameter ε is

lnL(ε) = m ln ε + (N − m) ln(1 − ε) + C , (2)

where C represents terms that do not depend on ε and can therefore be dropped. Setting
the derivative of lnL(ε) equal to zero gives

ε̂ =
m

N
, (3)

where the hat is used to denote the estimator of the true parameter ε.

The variance of the binomially distributed m is

V [m] = Nε(1 − ε) , (4)

and so the variance of the estimator ε̂ is

V [ε̂] = V

[
m

N

]
=

1

N2
V [m] =

ε(1 − ε)

N
. (5)
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Of course to evaluate this numerically we need an estimator of the variance of the estimator,
and we can take this to be

V̂ [ε̂] =
ε̂(1 − ε̂)

N
=

m(1 − m/N)

N2
. (6)

The estimate of the standard deviation is simply the square root,

σ̂[ε̂] =

√
ε̂(1 − ε̂)

N
=

√
m(1 − m/N)

N
. (7)

One can show that with equation (7), the following inequalities hold:

ε̂ − σ̂[ε̂] ≥ 0 , (8)

ε̂ + σ̂[ε̂] ≤ 1 . (9)

It may be of some comfort to know that the estimate plus or minus one standard deviation
stays with in the allowed range of 0 ≤ ε ≤ 1, but in fact if it were not true this would not
imply any particular contradiction. Using one standard deviation to represent the statistical
error is after all a matter of convention, and if we had taken 2σ as the conventional error bar
then the corresponding inequalities would not hold.

Another interesting special case is m = N , i.e., ε̂ = 1. Then from equation (7) one has
σ̂[ε̂] = 0. This of course does not necessarily mean that the true efficiency is equal to unity
nor that the true standard deviation of the estimator ε̂ is zero, but rather simply that our
estimates of these quantities have come out this way for the given MC data set. Similar
considerations apply of course to the case m = 0. In both cases, the estimate σ̂[ε̂] = 0
is essentially useless. In particular it cannot be used in the method of least squares (see
Section 3.1). However, rather than modifying the estimated error, it is often better to proceed
in a way that sidesteps completely the need for σ̂[ε̂], as we show in Section 3.2.

Often one wants to compute a set of efficiencies, e.g., one for each bin of a histogram,
ε1, . . . εNbin

. Suppose the true number of events in each bin is N1, . . . , NNbin
, and the corre-

sponding numbers of events selected are m1, . . . ,mNbin
. If these numbers are put into ROOT

histograms, then the routine TH1::Divide can be used to compute the corresponding efficien-
cies. If the option "B" is used, then this routine will compute the errors according to the bino-
mial model described above. Note that here mi represents the total number of events selected
out of the Ni generated. If the events are subject to some smearing that results in migration
between bins, then the number selected in the same bin as where they were generated will be
less. Here, however, mi means the number selected anywhere out of the Ni events generated
in bin i (see also Section 4 concerning the routine TGraphAsymmErrors::BayesDivide).

1.1 Conditioning on the total number of events

There may be cases where the number of generated events N is also random. For example,
one may first select the N events from a larger sample, and so N is itself could be binomi-
ally distributed. One could choose to model m/N as a ratio of two binomially distributed
variables, in which case the variance of the ratio would be larger than in the case of treating
N as a constant. This, however, does not in general provide the best way to summarize the
statistical uncertainty in the estimate of the efficiency.
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For purposes of estimating the statistical uncertainty of ε̂ = m/N , it is almost always best
to treat N as constant. This is an example of conditioning on an ancillary statistic. That
is, the estimate of of the efficiency ε is conditional upon having obtained N generated events
from which one finds m that are selected. An ancillary statistic, here N , is a random quantity
whose distribution does not depend on the parameter of interest, in this case ε. That is, if
we were to repeat the entire estimation procedure many times with statistically independent
data, then sometimes N would be higher, sometimes lower. If N comes out high, we obtain
a more accurate estimate of ε, i.e., we take the reported accuracy to be conditional upon
having found the given N .

The idea of conditioning on the total number of events arises in a similar way when one
estimates a branching fraction B from the observation of m decays to a final state X out of
N total events. Suppose experiment A finds 5 events, and 2 of them go to final state X. In a
run of the same integrated luminosity, competitor experiment B happens to find 10 events,
and 4 of them decay to X. Experiment B’s estimate of the branching ratio really is more
precise, because they have been lucky to obtain more events. There are theories, however,
(e.g., the Standard Model), where branching ratios and event production rates are related
to more fundamental parameters. If one were to insist on the model relation between the
production rate and branching ratio, then the number of events N is no longer an ancillary
statistic. If one were to estimate directly the more fundamental model parameters, then both
m and N would be treated as random quantities. A branching ratio or an efficiency, however,
would usually be regarded as a separate parameter, and one would condition on N . More
discussion on conditioning can be found in the book by Cox [1].

2 Confidence intervals

The standard deviation σ[ε̂] is a single parameter that characterizes the width of the sampling
distribution of the estimator ε̂, i.e., the distribution of ε̂ values that one would obtain from
a large number of repetitions of the entire procedure. This distribution, f(ε̂; ε,N), which
depends on ε and N as parameters, is not in general a symmetric function, i.e., upwards and
downwards fluctuations of ε̂ may not be equally likely. In some circumstances one may want
to quantify the statistical precision of the efficiency by constructing a confidence interval

[εlo, εup]. This interval can be asymmetric about the point estimate. General procedures for
constructing confidence intervals can be found in, for example, [2, 3].

We can specify separate probabilities for the upper and lower edges of the confidence
interval to be above or below the true parameter:

P (εlo > ε) < αlo , (10)

P (εup < ε) < αup . (11)

Taken together these equations say that the interval [εlo, εup] covers the true parameter with
probability

P (εlo ≤ ε ≤ εup) ≥ 1 − αlo − αup . (12)

Inequalities are used in the equations above because of the discrete nature of the binomial
data, e.g., the probability for the interval [εlo, εup] to cover ε is greater than or equal to
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1 − αlo − αup. One constructs the intervals so that the probabilities are as close as possible
to the desired values on the right-hand sides of (10)—(12).

The special case of αlo = αup ≡ γ/2 gives a central confidence interval with confidence
level CL = 1 − γ. Note that this does not necessarily mean that the interval is symmetric
about the point estimate ε̂, rather only that there are equal probabilities for the interval
to miss the true value from above and from below. For the case where the estimator ε̂ is
Gaussian distributed, e.g., when N is very large and ε is sufficiently far from both 0 and 1,
then the interval found from plus or minus one standard deviation about the estimator ε̂ is
central confidence interval with confidence level CL = 1 − γ = 0.683. For this reason one
often chooses as a convention to construct a central confidence interval with confidence level
CL = 0.683 also for those cases where the estimator does not follow a Gaussian distribution.

For the case of binomially distributed m out of N trials with probability of success ε, the
upper and lower limits on ε are found to be [3],

εlo =
mF−1

F [αlo; 2m, 2(N − m + 1)]

N − m + 1 + mF−1
F [αlo; 2m, 2(N − m + 1)]

, (13)

εup =
(m + 1)F−1

F [1 − αup; 2(m + 1), 2(N − m)]

(N − m) + (m + 1)F−1
F [1 − αup; 2(m + 1), 2(N − m)]

. (14)

Here F−1
F is the quantile of the F distribution (also called the Fisher–Snedecor distribution;

see [4]). The function F−1
F can be obtained using ROOT::Math::fdistribution_quantile

from the ROOT’s MathCore library [5].

Instead of constructing a central confidence interval, one can instead use equations (13)
and (14) to set upper or lower limits, i.e., one of either αlo or αup is taken to be zero. For
example, one could take αlo = 0.9 and use (13) to obtain a 90% CL lower limit on the
efficiency, which is of particular interest if one finds m = N .

3 Parametric approach

Suppose that the events are generated as a function of some other variable x, e.g., photons are
generated as a function of energy. In this section we consider how to estimate the efficiency
as a function of x using a parametric function.

The Monte Carlo produces two sets of numbers: the number of true events Ni in bin
i, with i = 1, . . . , Nbin, in each bin of the variable x, and the number of those events that
satisfy the selection criteria, mi. Note that being selected does not necessarily imply that
the reconstructed value of the variable x is in the same bin as that of the original event. If
the event whose true value of x is in bin i is accepted anywhere, it counts towards mi. The
question of the migration of events between bins can be treated by defining a response matrix

Rij = P (event found in bin i|true value in bin j) . (15)

What is meant in this note by the efficiency is

εj =
∑

i

Rij = P (event found anywhere|true value in bin j) . (16)
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In cases where one needs to include effects of migration between bins one can easily generalize
the ideas presented in this note to the estimation of the response matrix Rij . Here we will
only discuss the efficiency.

The mi are all independent, binomial variables and therefore the estimate of the efficiency
εi is as before

ε̂i =
mi

Ni

. (17)

Now suppose we have a parametric function that gives the efficiency as a function of the
variable x, ε(x;θ), where θ represents a set of parameters whose values are not known. Our
goal is to estimate the parameters, and then the estimated efficiency at any value of x can
be found from the function ε̂(x) = ε(x; θ̂).

3.1 Least squares

One way of estimating the parameters θ is to use the method of least squares in conjunction
with the estimates of the efficiency and their standard deviations obtained as described in
Section 1. That is, we define the estimator θ̂ to be the value of θ̂ that minimizes the quantity

χ2(θ) =
Nbin∑

i=1

(ε̂i − εi(θ))2

σ̂[ε̂i]2
. (18)

Here εi(θ) denotes the predicted efficiency averaged over the ith bin. As long as the variation
of the efficiency is not too nonlinear over an individual bin, one can use the approximation

εi(θ) ≈ ε(〈x〉i;θ) , (19)

where 〈x〉i is the average value of x in the ith bin. Note that the least-squares method
requires the standard deviations σ̂[ε̂i] of the estimated values ε̂i. The confidence interval
from Section 2 plays no role in this procedure.

Typically one will use a program such as MINUIT to minimize χ2(θ) thus determine
the estimators θ̂. The program will also deliver an estimate of the covariance matrix of the
estimators

Vij = cov[θ̂i, θ̂j ] . (20)

Usually this will be obtained by using the approximate relation between the inverse covariance
matrix and the second derivative of χ2(θ) at its minimum,

V −1
ij ≈ −

1

2

[
∂2χ2(θ)

∂θi∂θj

]

θ=θ̂

. (21)

This is a special case of the procedure used in connection with Maximum Likelihood and for
the approximation to hold the data ε̂i should be Gaussian distributed (see below).

The minimized value of χ2(θ) can as usual be used to assess the goodness-of-fit.
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3.2 Maximum likelihood

If the estimates ε̂i are treated as being Gaussian distributed, then one can easily show that
χ2(θ) = −2 lnL(θ) + C, where L(θ) is the likelihood function and C does not depend on θ.
If this holds then the method of least squares and the method of maximum likelihood are
equivalent. But the Gaussian approximation for the ε̂i only holds when N , m and N − m
are all large, i.e, one needs lots of events and the efficiency cannot be too close to zero
or unity. If this is not the case one should construct the ML estimators using the correct
sampling distribution of the measurements. Since we have ε̂i = mi/Ni where mi is binomially
distributed, we can construct the likelihood function using the mi directly; the ε̂i and σ̂[ε̂i]
are not required explicitly.

The likelihood function is given by the joint probability for the set of measured values
mi, i = 1, . . . , Nbin. Since they are independent and binomially distributed, we have

L(θ) =
Nbin∏

i=1

P (mi;Ni, εi(θ)) =
Nbin∏

i=1

P (mi;Ni, ε(xi;θ)) (22)

where in the final part of (22) the relation for εi(θ) given by equation (19) was used. Using
the binomial law (1) and taking the logarithm gives the log-likelihood function,

lnL(θ) =
Nbin∑

i=1

[mi ln ε(xi;θ) + (Ni − mi) ln(1 − ε(xi;θ))] + C , (23)

where C represents terms that do not depend on θ and therefore can be dropped.

Typically one will use a program such as MINUIT to maximize the log-likelihood and thus
determine the estimators θ̂. As in the least-squares case, the program will also deliver an
estimate of the covariance matrix of the estimators, usually obtained using the approximate
relation between the inverse covariance matrix and the second derivative of the log-likelihood
at its maximum,

V −1
ij ≈ −

[
∂2 lnL(θ)

∂θi∂θj

]

θ=θ̂

. (24)

This approximation holds for ML estimators in the large sample limit and is usually regarded
as accurate enough for most problems.

3.3 Error propagation

Using the methods of least squares or maximum likelihood provides estimators for the param-
eters θ that enter into the function ε(x;θ). The uncertainty in the efficiency at an arbitrary
value of x can be obtained using error propagation. The variance of ε(x; θ̂) is (see e.g. [2, 3]),

V [ε(x; θ̂)] =
∑

i,j

[
∂ε(x;θ)

∂θi

∂ε(x;θ)

∂θj

]

θ=θ̂

Vij , (25)

where the sum over i and j runs over all of the components of θ and Vij represents the

estimate of the covariance matrix cov[θ̂i, θ̂j ]. The estimated standard deviation σ̂[ε(x; θ̂)] is
of course the square root of the variance (25).
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If one needs the covariance between estimates of the efficiency at two different values, say,
x and x′, then from error propagation one has

cov[ε(x; θ̂), ε(x′; θ̂)] =
∑

i,j

[
∂ε(x;θ)

∂θi

∂ε(x′;θ)

∂θj

]

θ=θ̂

Vij . (26)

In some cases it may be possible to compute the required derivatives in closed form, in
others one may need to estimate them numerically using small steps ∆θi in the parameters.
If this is done, then these steps need to be sufficiently large so as to avoid rounding errors,
but not so large so as to give a poor estimate of the derivative. As a rule of thumb one could
take the ∆θi to be somewhere in the range 0.1 to 0.5 times the standard deviation σ[θ̂i]. This
is then valid as long as a the efficiency as a function of the parameter is sufficiently linear
over a range comparable to σ[θ̂i]. This must be true in any case for the error propagation
formula to be a valid approximation.

4 Bayesian approach

The methods described above are all in the framework of frequentist statistics, i.e., proba-
bilities are only associated with the outcomes of repeatable measurements, and not with the
value of a parameter such as the efficiency ε. In Bayesian statistics, one can associate a
probability with a parameter and treat it as a degree of belief about where the parameter’s
true value lies. The Bayesian approach for estimating efficiencies has been described in [6].

Suppose we generate N events of which m are selected. We treat m as a binomially
distributed variable with selection probability of each event ε, and our goal is to determine
ε. Using Bayes’ theorem we can write the posterior probability density for ε as

p(ε|m,N) =
P (m|ε,N)π(ε)∫
P (m|ε,N)π(ε) dε

. (27)

Here P (m|ε,N) is the likelihood, here written as the conditional probability of the data
m given the parameters ε and N . The probability density function (pdf) π(ε) is the prior

probability, i.e., it reflects our degree of belief about ε prior to observing m. The denominator
in (27) serves to normalize the posterior density p(ε|m,N) to unity.

Bayes’ theorem effectively states how one’s knowledge about ε should be updated in the
light of the observation m. Bayesian statistics provides no unique recipe, however, for writing
down the prior pdf π(ε). This could depend on theoretical prejudice, previous measurements,
symmetries, and so forth. For the case of the efficiency, for example, we would clearly set the
prior equal to zero outside the allowed region 0 ≤ ε ≤ 1. If we have no prior knowledge of
the efficiency beyond that, one could choose a uniform prior between zero and one:

π(ε) =

{
1 0 ≤ ε ≤ 1,

0 otherwise.
(28)

If we use this prior together with the binomial probability (1) for the likelihood, Bayes’
theorem gives for the posterior pdf of ε (see [6]),

p(ε|m,N) =
Γ(N + 2)

Γ(m + 1)Γ(N − m + 1)
εm(1 − ε)N−m , (29)
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where Γ is the Euler gamma function (TMath::Gamma)1, which is a special case of the beta
distribution. Figure 1 shows the posterior density obtained using the uniform prior with
N = 100 events for several values of m.
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Figure 1: The posterior pdf p(ε|m,N)
obtained using a uniform prior with N =
100 events for several values of m.

In the Bayesian approach, all of the information about the parameter ε is encapsulated
in the posterior pdf p(ε|m,N). Rather than reporting the entire curve, however, it can be
summarized by giving, for example, the mode (value of the peak). From Bayes’ theorem
(27) one can see that if the prior π(ε) is a constant, then the posterior, p(ε|m,N), is directly
proportional to the likelihood, P (m|ε,N), and therefore for this special case the mode of the
posterior coincides with the maximum-likelihood estimator. Comparing with equation (3) we
therefore have

mode[ε] =
m

N
. (30)

Alternatively one could give the posterior expectation (mean) value of ε,

E[ε] =

∫ 1

0
εp(ε|m,N) dε . (31)

One finds

E[ε] =
B(m + 2, N − m + 1)

B(m + 1, N − m + 1)
, (32)

where B(a, b) is the Euler Beta function (TMath::Beta),

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1 dt =
Γ(a)Γ(b)

Γ(a + b)
. (33)

To quantify the width of the posterior density one can compute its variance (standard
deviation squared), which is

V [ε] = E[ε2] − (E[ε])2 =
B(m + 3, N − m + 1)

B(m + 1, N − m + 1)
−

(
B(m + 2, N − m + 1)

B(m + 1, N − m + 1)

)2

. (34)

1For even moderately large N and m the gamma functions can give numerical overflow. It is better to
compute the logarithm of the combination of gamma functions using, e.g., the routine TMath::LnGamma and
then exponentiate the result.
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Alternatively one can find the shortest interval containing 68.3% of the probability. Soft-
ware to do this numerically can be obtained from [6]. This is also implemented in the ROOT
routine TGraphAsymmErrors::BayesDivide. This routine takes the values for the numbers
of selected events m1, . . . ,mNbin

and the number of generated events N1, . . . , NNbin
, both in

the form of histograms and computes for each bin the corresponding efficiency and shortest
68.3% Bayesian intervals. Note that with TGraphAsymmErrors::BayesDivide one implicitly
assumes that an event generated in a given bin is either found in that bin or not found at all;
migration between bins is assumed not to occur. The routine simply takes the value in bin i
of one of the histograms as mi and in that of the other as Ni, and carries out the Bayesian
calculation assuming a binomial model with uniform prior for these quantities.
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