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Error analysis with weighted events

In an experiment we may count a certain number of events n, which is treated as following
a Poisson distribution. The standard procedure is to use n as an estimate of the mean of the
Poisson distribution. The value n also gives an estimate for its variance, or equivalently

√
n

is used for the standard deviation or “statistical error”. The rationale behind this procedure
is reviewed in Sec. 1. If the events are assigned weights, then we find that sum of the weights
plays the role of n and the sum of the weights squared can be used to estimate the variance.
These results were derived in a draft note [1] and for completeness are reviewed here in Sec. 2.
In Sec. 3 the results are generalized to the case where one has a set of n events with two
possible sets of weghts, which are correlated.

1 Estimate for mean of a Poisson variable

Suppose we select n events and we want to assign a statistical error. Often we regard n as
following a Poisson distribution with expectation (mean) value E[n] = ν. The likelihood
function is therefore

L(ν) =
νn

n!
e−ν . (1)

By setting the derivative of lnL equal to zero one finds the maximum-likelihood estimator
for ν (here estimators will be written with hats),

ν̂ = n . (2)

Because n follows a Poisson distribution, its variance is equal to its mean, so the variance of
ν̂ is V [ν̂] = V [n] = ν, and the estimator of the variance of the estimator is V̂ [ν̂] = n. That
is, the estimate of the standard deviation (the “statistical error”) is σ̂ν̂ =

√
n.

2 Weighted events

Now suppose each event carries a statistically independent weight, w1, . . . , wn, the expectation
value of the weights is E[w] = ω, and the variance of the weights is V [w] = σ2

w. Let us suppose
as well the expectation value of n is E[n] = ν/ω. Since n is still Poisson distributed, the
variance of n is V [n] = ν/ω.

We have not yet made an assumption about the distribution of the weights except to say
E[w] = ω and V [w] = σ2

w. Suppose we use the sum of the weights as an estimator for ν, i.e.,

ν̂ =
n∑

i=1

wi . (3)
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To compute the expectation value and variance of ν̂ we must take into account that n and
the wi are random quantities. Since the weights are independent, the conditional expectation
value and variance of ν̂ given n are

E[ν̂|n] = nω , (4)

V [ν̂|n] = nσ2

w . (5)

Using the law of total expectation [2], the unconditional expectation value is

E[ν̂] = E[E[ν̂|n]] = E[nω] =
ν

ω
ω = ν , (6)

and therefore the estimator ν̂ is unbiased.

The unconditional variance is found using the law of total variance [3] to be

V [ν̂] = E[V [ν̂|n]] + V [E[ν̂|n]] = E[nσ2

w] + V [nω] =
ν

ω
(σ2

w + ω2) . (7)

To estimate the variance V [ν̂] we can use the sum of the squares of the weights,

σ̂2

ν̂ =
n∑

i=1

w2

i . (8)

and we show below that this estimator is unbiased. Since σ2
w = E[w2]− ω2, the conditional

expectation of σ̂2

ν̂ given n is

E
[
σ̂2

ν̂ |n
]
=

n∑

i=1

E[w2

i ] = n(σ2

w + ω2) , (9)

and therefore the expectation value of σ̂2

ν̂ is

E
[
σ̂2

ν̂

]
= E

[
E

[
σ̂2

ν̂ |n
]]

=
ν

ω
(σ2

w + ω2) . (10)

This is the same as the true variance from Eq. (7), and therefore the sum of the squares of
the weights (3) is an unbiased estimator for the variance of ν̂. That is, we can take the sum
of the weights to estimate the number of events that would be present if all had a weight of
unity, and we use the square root of the sum of the squares of weights for the corresponding
standard deviation (i.e., the statistical error).

3 Different sets of weights

Now suppose that we select n events and there are two possible sets of weights, u1, . . . , un
and v1, . . . , vn, in which pairs of values having the same index are correlated, i.e., cov[ui, vi]
may be nonzero, but otherwise the values are independent. Suppose we use the estimators
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µ̂ =
n∑

i=1

ui , (11)

ν̂ =
n∑

i=1

vi , (12)

to estimate the corresponding mean values µ and ν. From the results of Sec. 2 we know
that the estimators are unbiased, and that their variances can be estimated using the sum
of squares of the weights. In some problems, we may also need their covariance, cov[µ̂, ν̂].
This can be related to conditional covariances and expectation values given n using the law
of total covariance [4],

cov[µ̂, ν̂] = E [cov[µ̂, ν̂|n]] + cov [E[µ̂|n], E[ν̂|n]] . (13)

To compute the terms on the right-hand side we need

E[µ̂|n] = E

[
n∑

i=1

ui|n
]
= nE[u] , (14)

E[ν̂|n] = E

[
n∑

i=1

vi|n
]
= nE[v] , (15)

as well as

cov[µ̂, ν̂|n] =
n∑

i,j=1

cov[ui, vj ] =
n∑

i,j=1

δijcov[ui, vi] =
n∑

i=1

cov[ui, vi] = ncov[u, v] . (16)

Substituting the ingredients into Eq. (13) gives

cov[µ̂, ν̂] = E [ncov[u, v]] + cov [nE[u], nE[v]]

= E[n]cov[u, v] + E[u]E[v]cov[n, n] . (17)

We can use the fact that n is Poisson distributed so cov[n, n] = V [n] = E[n]. Furthermore
by definition we have cov[u, v] = E[uv]− E[u]E[v] and therefore we find the covariance of µ̂
and ν̂ is

cov[µ̂, ν̂] = E[n]E[uv] . (18)

To estimate the covariance we can estimate E[n] with n and E[uv] with the corresponding
average. After canceling the factors of n this gives the simple estimator

ĉov[µ̂, ν̂] =
n∑

i=1

uivi . (19)
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Using again the law of total expectation one can verify that this estimator is unbiased, since

E [ĉov[µ̂, ν̂]] = E

[
n∑

i=1

uivi

]
= E

[
E

[
n∑

i=1

uivi|n
]]

= E [nE[uv]] = E[n]E[uv] , (20)

which is the same as the true covariance found in Eq. (18).

For the special case where the weights are the same for the two samples, i.e., ui = vi,
then µ̂ and ν̂ are equal. In this case the expressions found for the covariance (18) and its
estimator (19) reduce to the corresponding results for the variance found above in Eqs. (7)
and (8).

4 Use with error propagation

As an example using the covariance, suppose we have a function f(µ̂, ν̂) and we want to
estimate its variance. Using error propagation (see, e.g., [5] Sec. 37.2.5), this can be approx-
imated using

V [f ] ≈
(
∂f

∂µ̂

)2

V [µ̂] +

(
∂f

∂ν̂

)2

V [ν̂] + 2

(
∂f

∂µ̂

∂f

∂ν̂

)
cov[µ̂, ν̂] . (21)

For example, for the ratio f = µ̂/ν̂ one obtains

V [f ] ≈ V [µ̂]

ν̂2
+

µ̂2V [ν̂]

ν̂4
− 2

µ̂

ν̂3
cov[µ̂, ν̂] . (22)

To obtain an numerical estimate for this quantity, one simply replaces the (co)variances on
the right-hand side by their estimators as derived above.

As noted in Ref. [5], the approximation of the error propagation procedure is only valid if
the function f is close to linear in a region over which the arguments of f vary. Because the
ratio f = µ̂/ν̂ is a nonlinear function of ν̂, the approximation will break down if the standard
deviation of ν̂ is comparable to ν itself. From Eq. (7), the standard deviation of ν̂ is

σν̂ =

√
ν

ω
(σ2

w + ω2) . (23)

If the condition σν̂ ≪ ν does not hold, the the approximation for the variance in Eq. (22)
will not be valid.
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